Home
Class 12
MATHS
If x > 0, y > 0, z>0 and x + y + z = 1 t...

If `x > 0, y > 0, z>0 and x + y + z = 1` then the minimum value of `x/(2-x)+y/(2-y)+z/(2-z)` is

A

0.2

B

0.4

C

0.6

D

0.8

Text Solution

Verified by Experts

The correct Answer is:
C

Since, AM of `(-1)th` powers `ge(-1)th` powers of AM
`:.((2-x)^(-1)+(2-y)^(-1)+(2-z)^(-1))/(3)ge(((2-x)+(2-y)+(2-z))/(3))^(-1)`
`=[(6-(x+y+z))/(3)]^(-1)=((6-1)/(3))^(-1)=(3)/(5)" " [:.x+y+z=1]`
`((2-x)^(-1)+(2-y)^(-1)+(2-z)^(-1))/(3)ge (3)/(5)`
or `(1)/(3)[(1)/(2-x)+(1)/(2-y)+(1)/(2-z)]ge (3)/(5)`
`implies (1)/(2-x)+(1)/(2-y)+(1)/(2-z)ge (9)/(5)`
or `(2)/(2-x)+(2)/(2-y)+(2)/(2-z)ge (18)/(5)`
or `1+(x)/(2-x)+1+(y)/(2-y)+1+(z)/(2-z)ge (18)/(5)`
or `(x)/(2-x)+(y)/(2-y)+(z)/(2-z)ge (18)/(5)-3`
Hence, `(x)/(2-x)+(y)/(2-y)+(z)/(2-z)ge (3)/(5)=0.6`
`implies (x)/(2-x)+(y)/(2-y)+(z)/(2-z)ge 0.6`
Thus, minimum value of `(x)/(2-x)+(y)/(2-y)+(z)/(2-z)` is 0.6.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let x,y,z in C satisfy |x| = 1, |y-6-8i| = 3 and |z + 1-7i| = 5 respectively, then the minimum value of |x-z| + |y-z| is equal to

If a ,\ b ,\ c >0\ a n d\ x ,\ y ,\ z in R , then the determinant |\ \ (a^x+a^x)^2(a^x-a^(-x))^2 1(b^y+b^(-y))^2(b^y-b^(-y))^2 1(c^z+c^(-z))^2(c^z-c^(-z))^2 1| is equal to- a. a^x b^y c^x b. a^(-x)b^(-y)c^(-z)\ c. a^(2x)b^(2y)c^(2x) d. zero

If the lattice point P(x, y, z) , x, y, zgto and x, y, zinI with least value of z such that the 'p' lies on the planes 7x+6y+2z=272 and x-y+z=16, then the value of (x+y+z-42) is equal to

If the lines 2x-y+3z + 4 = 0=ax + y-z + 2 and x-3y + z=0 =x + 2y + z +1 are coplannar then the value of a is ...........

If x + y + z =a and the minimum value of a/x+a/y+a/z is 81^lambda , then the value of lambda is

If x,y,z are nonzero real numbers, then the inverse of matrix A=[{:(x,0,0),(0,y,0),(0,0,z):}] is ………

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x^2 + y^2+z^2 = 1, & \ x+y+z=sqrt(3) , then

Find the equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x - y + z = 0.

The corner points of the bounded feasible region are (0, 0), (2, 0), (4, 2), (2, 4) and (0, 10/3) . Then for the objective function z = -x + 2y. (i) Maximum value of z has at ………. (ii) Minimum value of z has at ………… (iii) The maximum value of z is ........... (iv) The minimum value of z is ............

If x,y,z are all different from zero and |{:(1+x,1,1),(1,1+y,1),(1,1,1+z):}|=0 then value of x^(-1)+y^(-1)+z^(-1) is ".........."