Home
Class 12
MATHS
If sum(i=1)^(n)a(i)^(2)=lambda, AAa(i)ge...

If `sum_(i=1)^(n)a_(i)^(2)=lambda, AAa_(i)ge0` and if greatest and least values of `(sum_(i=1)^(n)a_(i))^(2)` are `lambda_(1)` and `lambda_(2)` respectively, then `(lambda_(1)-lambda_(2))` is

A

`nlambda`

B

`(n-1)lambda`

C

`(n+2)lambda`

D

`(n+1)lambda`

Text Solution

Verified by Experts

The correct Answer is:
B

`:.`AM of 2nd powes `ge` 2nd power of AM
`:.(a_(1)^(2)+a_(2)^(2)+a_(3)^(2)+"..."a_(n)^(2))/(n) ge((a_(1)+a_(2)+a_(3)+"..."a_(n))/(n))^(2)`
`implies (lambda)/(n)ge((sum_(i=1)^(n)a_(i))/(n))^(2) :.ge(sum_(i=1)^(n)a_(i))^(2)le n lambda " " ".......(i)"`
Also,`(a_(1)+a_(2)+a_(3)+"..."a_(n))^(2)=a_(1)^(2)+a_(2)^(2)+a_(3)^(2)+"..."a_(n)^(2)+2suma_(1)a_(2)=lambda+2suma_(1)a_(2)gelambda`
`:.(sum_(i=1)^(n)a_(i))^(2)le lambda" " ".......(ii)"`
From Eqs. (i) and (ii), we get
`lambdale(sum_(i=1)^(n)a_(i))^(2)le n lambda`
`:.lambda_(1)=nlambda" and "lambda_(2)=lambda`
Then, `lambda_(1)-lambda_(2)=(n-1)lambda`
Promotional Banner

Similar Questions

Explore conceptually related problems

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

The value of sum_(n=0)^(50)i^(2n+n)! (where i=sqrt(-1)) is

If sum_(i=1)^(2n)cos^(-1)x_i=0 then find the value of sum_(i=1)^(2n)x_i

If K_(1) and K_(2) are maximum K.E. photoelectron emitted when lights wavelength lambda_(1) and lambda_(2) respectively incident a metallic surface .If lambda_(1)=3lambda_(2) ,then…..

If a_(1),a_(2),a_(3),a_(4) and a_(5) are in AP with common difference ne 0, find the value of sum_(i=1)^(5)a_(i) " when " a_(3)=2 .

The wavelength of K_(alpha) X-rays for lead isotopes P_(b)^(208),P_(b)^(206) and P_(b)^(204) are lambda_(1),lambda_(2), and lambda_(3) , respectively. Then ...

If , lambda_(1) and lambda_(2) are the wavelength of the numbers of the Lyman and Paschen seri respectively. Then lambda_(1):lambda_(2)= .....

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is