Home
Class 12
MATHS
The natural number a for which sum(k=1)^...

The natural number `a` for which `sum_(k=1)^n f(a+k)=16(2^n-1)` where the function f satisfies the relation `f(x+y)=f(x).f(y)` for all natural numbers x,y and further `f(1)=2` is:-
A) 2 B) 3 C) 1 D) none of these

Text Solution

Verified by Experts

Given, `f(x+y)=f(x)f(y)" " "....(i)"`
and `f(1)=2" " "……(ii)"`
On putting `x=y=1` in Eq. (i), we get
`f(1+1)=f(1)f(1)=2*2`
`:.f(2)=2^(2) " " "…..(iii)"`
Now, on putting `x=1,y=2` in Eq. (i), we get
`f(1+2)=f(1)f(2)=2*2^(2)" " [" from Eqs. (ii) and (iii) "]`
`:. f(3)=2^(3)`
On, putting `x=1,y=2` in Eq. (i), we get
`f(2+2)=f(2)f(2)=2^(2)*2^(2) " " [" from Eq. (iii) "]`
`:. f(4)=2^(4)`
`vdots" " vdots " " vdots " "`
Similarly, `f(lambda)=2^(lambda),lambda in N`
`:.f(a+k)=2^(a+k),a+k inN`
`:.sum_(k=1)^(n)f(a+k)=16(2^(n)-1) implies sum_(k=1)^(n)2^(a+k)=16(2^(n)-1)`
`implies 2^(n)sum_(k=1)^(n)2^(k)=16(2^(n)-1)`
`implies 2^(n)(2^(1)+2^(2)+2^(3)+"...."2^(n))=16(2^(n)-1)`
`implies 2^(n)*(2(2^(n)-1))/((2-1))=16(2^(n)-1)`
`implies 2^(a+1)=16=2^(4)`
`impliesa+1=4`
`:. a=3`.
Promotional Banner

Similar Questions

Explore conceptually related problems

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

Let f be a function satisfying of xdot Then f(x y)=(f(x))/y for all positive real numbers xa n dydot If f(30)=20 , then find the value of f(40)dot

If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then find sum_(n=1)^(m)f(n) . Also, prove that f(x) is odd.

A function f:R->R satisfies the relation f((x+y)/3)=1/3|f(x)+f(y)+f(0)| for all x,y in R. If f'(0) exists, prove that f'(x) exists for all x, in R.

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to

Consider function f(x) satisfies the relation f(x+y^(3))=f(x)+f(y^(3))AAx,yinRand differentiable for all x . Statement I If f'(2)=a then f'(-2)=a f(x) is an odd function.

For x inR - {1} , the function f(x ) satisfies f(x) + 2f(1/(1-x))=x . Find f(2) .

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

If 2f(x)=f(x y)+f(x/y) for all positive values of x and y,f(1)=0 and f'(1)=1, then f(e) is.

A function f : R rarr R satisfies the equation f(x + y) = f(x) . f(y) for all, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2. Then,