Home
Class 12
MATHS
Find the sum of n terms of the series 1^...

Find the sum of n terms of the series `1^3+3.2^2+3^3+3.4^2+5^3+3.6^2+.......` when (i)n is odd (ii)n is even

Text Solution

Verified by Experts

Case I If n is even.
Let `n=2m`
`:. S=1^(3)+3*2^(2)+3^(3)+3*4^(2)+5^(3)+3*6^(2)+"......"+(2m-1)^(3)+2(2m)^(2)`
`={1^(3)+3^(3)+5^(3)+"......"+(2m-1)^(3)}+3{2^(2)+4^(2)+6^(2)+"....."+(2m)^(2)}`
`=sum_(r=1)^(m)(2r-1)^(3)+3*4sum_(r=1)^(m)r^(2)`
`=sum_(r=1)^(m){8r^(3)-12r^(2)+6r-1}+12sum_(r=1)^(m)r^(2)`
`=8sum_(r=1)^(m)r^(3)-12sum_(r=1)^(m)r^(2)+6sum_(r=1)^(m)r-sum_(r=1)^(m)1+12sum_(r=1)^(m)r^(2)`
`=8sum_(r=1)^(m)r^(3)+6sum_(r=1)^(m)r-sum_(r=1)^(m)1`
`=8*(m^(2)(m+1)^(2))/(4)+6(m(m+1))/(2)-m`
`=m[2m^(3)+4m^(2)+5m+2]`
`=(n)/(2)[2((n)/(2))^(3)+4((n)/(2))^(2)+5((n)/(2))+2] " "[:.m=(n)/(2)]`
Hence, `S=(n)/(2)(n^(3)+4n^(2)+10n+8)" " ".....(i)"`
Case II If n is odd.
Then, `(n+1)` is even in the case
Sum of n terms = Sum of first `(n+1)` terms `-(n+1)th` term
`=((n+1))/(8)[(n+1)^(3)+4(n+1)^(2)+10(n+1)+8]-3(n+1)^(2)`
, `=((n+1))/(8)[(n+1)^(3)+4(n+1)^(2)+10(n+1)+8]-3(n+1)^(2)`
Hence, `S=(1)/(8)(n+1)[n^(3)+7n^(2)-3n-1]`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of n terms of the series 1+4/5+7/(5^2)+10/5^3+dot

Find the sum of n terms of the series 1.3.5.+3.5..7+5.7.9+...

Find the sum of n terms of the series 3+7+14+24+37.............

Find the sum to n terms of each of the series in 1xx2+2xx3+3xx4+4xx5+....

Find the sum to n terms of the series whose n^("th") term is n (n+3).

Find the sum to n terms of each of the series in 3 × 1^(2) + 5 × 2^(2) + 7 × 3^(2) +.........

Find the sum to n terms of each of the series in 1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + ...

Find the sum of n terms of each of the following 1^(3) + 4^(3) + 7^(3)+ ……..

Find the sum of n terms of each of the following 2.1 + 5.3 + 8.5 + ……..

Find the sum to n terms of each of the series in 1/(1xx2)+1/(2xx3)+1/(3xx4)+.......