Home
Class 12
MATHS
IF f(r )=1+(1)/(2)+(1)/(3)+"...."+(1)/(r...

IF `f(r )=1+(1)/(2)+(1)/(3)+"...."+(1)/(r )` and `f(0)=0`, find `sum _(r=1)^(n)(2r+1)f(r )`.

Text Solution

Verified by Experts

Since, `sum _(r=1)^(n)(2r+1)f(r )`
`=sum _(r=1)^(n)(r^(2)+2r+1-r^2))f(r )=sum _(r=1)^(n){(r+1)^(2)-r^(2)}f(r )`
`=sum _(r=1)^(n){(r+1)^(2)f(r )-(r+1)^(2)f(r+1)+(r+1)^(2)f(r+1)-r^(2)f(r )}`
`=sum _(r=1)^(n)(r+1)^(2){f(r )-(r+1)}+sum _(r=1)^(n){(r+1)^(2)f(r+1)-r^(2)f(r )}`
`=-sum _(r=1)^(n)((r+1)^(2))/((r+1))+sum _(r=1)^(n)(r+1)^(2)f(r+1)+(n+1)^(2) f(n+1)-sum_r^(r=1)r^(2)f(r)[:.f(r+1)-f(r)=(1)/(r+1)]`
`=-sum _(r=1)^(n)(r+1)+{2^(2)f(2)+3^(2)f(3)+"...."n^(2)f(n)}+(n+1)^(2)f(n+1)={1^(2)f(1)+2^(2)f(2)+3^(2)+"...."n^(2)f(n)}`
`=-sum _(r=1)^(n)r-sum _(r=1)^(n)1+(n+1)^(2)f(n+1)-1^(2)f(1)`
`=(n(n+1))/(2)-n+(n+1)^(2)f(n+1)-f(1)`
`=(n+1)^(2)f(n+1)-(n(n+1))/(2)-1 " "[:.f(1)=1]`
`=(n+1)^(2)f(n+1)-((n^(2)+3n+2))/(2)`
Hence, this is the required result.
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

If t_(1)=1,t_(r )-t_( r-1)=2^(r-1),r ge 2 , find sum_(r=1)^(n)t_(r ) .

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

Let f : (0, oo) rarr R be a continuous function such that f(x) = int_(0)^(x) t f(t) dt . If f(x^(2)) = x^(4) + x^(5) , then sum_(r = 1)^(12) f(r^(2)) , is equal to

Two resistors of resistances R_(1)=100pm3 ohm and R_(2)=200pm4 ohm are connected (a) series , (b) in parallel. Find the equivalent resistance of the (a) series combination, (b) parallel combination. Use for (a) the relation R = R_(1)+R_(2) and for (b) (1)/(R') = (1)/(R_(1))+(1)/(R_(2)) and (DeltaR')/(R'^(2)) = (DeltaR_(1))/(R_(1)^(2))+(DeltaR_(2))/(R_(2))

If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 and f(2)=2 and x,y, z epsilonR the value of lim_(xtooo)sum_(r=1)^(n)((4r)f(3r))/(n^(3)) is ……….

If alpha_(1), alpha_(2), alpha_(3), beta_(1), beta_(2), beta_(3) are the values of n for which sum_(r=0)^(n-1)x^(2r) is divisible by sum_(r=0)^(n-1)x^(r ) , then the triangle having vertices (alpha_(1), beta_(1)),(alpha_(2),beta_(2)) and (alpha_(3), beta_(3)) cannot be

Let f be defined on the natural numbers as follow: f(1)=1 and for n gt 1, f(n)=f[f(n-1)]+f[n-f(n-1)] , the value of 1/(30)sum_(r=1)^(20)f(r) is

Statement -1 If Delta(r)=|{:(r,r+1),(r+3,r+4):}| then sum_(r=1)^(n) Delta(r)=-3n Satement-2 If Delta(r)=|{:(f_(1)(r),f_(2)(r)),(f_(3)(r),f_(4)(r)):}| Sigma_(r=1)^(n) Delta (r)={:abs((Sigma_(r=1)^(n)f_1(r),Sigma_(r=1)^(n)f_2(r)),(Sigma_(r=1)^(n)f_3(r),Sigma_(r=1)^(n) f_4(r))):}

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then