Home
Class 12
MATHS
Evaluate sum(m=1)^(oo)sum(n=1)^(oo)(m^(2...

Evaluate `sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n)))`.

Text Solution

Verified by Experts

Let`S=sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n)))`
`=sum_(m=1)^(oo)sum_(n=1)^(oo)(1)/(((3^(m))/(m))((3^(m))/(m)+(3^(n))/(n)))`
Now, let `a_(m)=(3^(m))/(m)" and "a_(n)=(3^(n))/(n)`
Then. `S=sum_(m=1)^(oo)sum_(n=1)^(oo)(1)/(a_(m)(a_(m)+a_(n))) " " "....(i)"`
By interchanging m and n, then
`S=sum_(m=1)^(oo)sum_(n=1)^(oo)(1)/(a_(n)(a_(n)+a_(m)))" " ".....(ii)"`
On adding Eqs. (i) and (ii), we get
`2S=sum_(m=1)^(oo)sum_(n=1)^(oo)(1)/(a_(m)a_(n))=sum_(m=1)^(oo)sum_(n=1)^(oo)(mn)/(3_(m)3_(n))`
`=(sum_(n=1)^(oo)(n)/(3^(n)))^(2)=[1((1)/(3))+2((1)/(3))^(2)+3((1)/(3))^(3)+"..."]^(2)`
`=(S')^(2)" " "......(iii)"`
where, `S'=1((1)/(3))+2((1)/(3))^(2)+3((1)/(3))^(3)+"...+"oo`
`((1)/(3ul)S'=1((1)/(3ul))^(2)+2((1)/(3ul))^(3)+" "+"...+"oo)/((2)/(3)S'=(1)/(3)+((1)/(3))^(2)+((1)/(3))^(3)+" "+"...+"oo)`
`=((1)/(3))/(1-(1)/(3))=(1)/(2)`
`:.S'=(3)/(4)`
From E q. (iii), we get `2s=((3)/(4))^(2)`
`S=(9)/(32)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo)(1)/(3^(i)3^(j)3^(k)) .

The value of sum_(m=1)^ootan^(- 1)((2m)/(m^4+m^2+2)) is

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

The sequence a_(1),a_(2),a_(3),".......," is a geometric sequence with common ratio r. The sequence b_(1),b_(2),b_(3),".......," is also a geometric sequence. If b_(1)=1,b_(2)=root4(7)-root4(28)+1,a_(1)=root4(28)" and "sum_(n=1)^(oo)(1)/(a_(n))=sum_(n=1)^(oo)(1)/(b_(n)) , then the value of (1+r^(2)+r^(4)) is

Evaluate S=sum_(n=0)^n(2^n)/((a^(2^n)+1) (where a>1) .

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

Definite integration as the limit of a sum : lim_(ntooo)[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+.........+(1)/(8n)]=........

tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=?

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))