Home
Class 12
MATHS
Find the value of sum(i=0)^(oo)sum(j=0)^...

Find the value of `sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo)(1)/(3^(i)3^(j)3^(k))`.

Text Solution

Verified by Experts

Let `S=sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo)(1)/(3^(i)3^(j)3^(k)) " " [i nejnek]`
We will first of all find the sum without any rsetriction on `I,j,k`
Let `S_(1)=sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo)(1)/(3^(i)3^(j)3^(k))=(sum_(i=0)^(oo)(1)/(3^(i)))^(3)`
`((3)/(2))^(3)=(27)/(8)`
Case I If `i=j=k`
Let `S_(2)=sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo)(1)/(3^(i)3^(j)3^(k))`
`=sum_(i=0)^(oo)(1)/(3^(3i))=1+(1)/(3^(3))+(1)/(3^(6))+"..."=(1)/(1-(1)/(3^(3)))=(27)/(26)`
Case II If `i=j=k`
Let `S_(3)=sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo)(1)/(3^(i)3^(j)3^(k))=(sum_(i=0)^(oo)(1)/(3^(2i)))(sum_(k=0)^(oo)(1)/(3^(k)))" " [:.knei}`
`=sum_(i=0)^(oo)(1)/(3^(2i))((3)/(2)=(1)/(3^(i)))sum_(i=0)^(oo)(3)/(2)*(1)/(3^(2i))-sum_(i=0)^(oo)(1)/(3^(3i))`
`=(3)/(2)*(9)/(8)-(27)/(26)=(135)/(208)`
Hence required sum, `S=S_(1)-S_(2)-3S_(3)`
`=(27)/(8)-(27)/(26)-3((135)/(208))=(27xx26-27xx8-3xx135)/(208)=(81)/(208)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n))) .

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

Let f : R rarr R be a differentiable function at x = 0 satisfying f(0) = 0 and f'(0) = 1, then the value of lim_(x to 0) (1)/(x) . sum_(n=1)^(oo)(-1)^(n).f((x)/(n)) , is

The value of sum_(n=0)^(50)i^(2n+n)! (where i=sqrt(-1)) is

Definite integration as the limit of a sum : lim_(ntooo)sum_(k=0)^(n)(n)/(n^(2)+k^(2))=..........

Evaluate sum_(k-1)^11(2+3^k)

The value of sum_(r=-3)^(1003)i^(r)(where i=sqrt(-1)) is

Evaluate ^(47)C_(4)+sum_(j=0)^(3)""^(50-j)C_(3)+sum_(k=0)^(5) ""^(56-k)C_(53-k) .

Definite integration as the limit of a sum : lim_(ntooo)sum_(K=1)^(n)(K)/(n^(2)+K^(2))=......