Home
Class 12
MATHS
(1)/(1*2)+(1)/(2*3)+(1)/(3*4)+"…."+(1)/(...

`(1)/(1*2)+(1)/(2*3)+(1)/(3*4)+"…."+(1)/(n(n+1))` equals

A

`(1)/(n(n+1))`

B

`(n)/(n+1)`

C

`(2n)/(n+1)`

D

`(2)/(n(n+1))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

By using the principle of mathematical induction , prove the follwing : P(n) : (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + …….+ (1)/(n(n+1)) = (n)/(n+1) , n in N

For all ngt=1 , prove that , (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + ……+ (1)/(n(n+1)) = (n)/(n+1)

Prove the following by using the principle of mathematical induction for all n in N (1)/(1.2.3) + (1)/(2.3.4) + (1)/(3.4.5) + ……+ (1)/(n(n+1)(n+2)) = (n(n+3))/(4(n+1)(n+2))

By using the principle of mathematical induction , prove the follwing : (1)/(1.4) + (1)/(4.7) + (1)/(7.10) + ………..+ (1)/((3n - 2)(3n+1)) = (n)/(3n + 1) , n in N

Let a sequence {a_(n)} be defined by a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"....."(1)/(3n) , then

Prove the following by using the principle of mathematical induction for all n in N (1)/(1.4)+(1)/(4.7)+ (1)/(7.10)+…….+(1)/((3n -2)(3n+1)) = (n)/(3n+1)

Prove the following by using the principle of mathematical induction for all n in N (1)/(1.3) + (1)/(3.5) + (1)/(5.7) + …….+(1)/((2n-1)(2n+1)) = (n)/(2n+1)

Prove the following by using the principle of mathematical induction for all n in N (1)/(2.5) + (1)/(5.8) + (1)/(8.11) + ……. + (1)/((3n-1)(3n+2)) =(n)/((6n + 4))

If a_(1), a_(2), a_(3) ,…., a_(n) are the terms of arithmatic progression then prove that (1)/(a_(1)a_(2)) + (1)/(a_(2)a_(3)) + (1)/(a_(3)a_(4)) + ….+ (1)/(a_(n-1) a_(n)) = (n-1)/(a_(1)a_(n))

Prove the following by using the principle of mathematical induction for all n in N (1-(1)/(2^2)) (1-(1)/(3^2))(1-(1)/(4^2))…….(1-(1)/(n^2)) = (n+1)/(2n) " " n >= 2