Home
Class 12
MATHS
If a+b+c=3 and agt0,bgt0,cgt0 then the g...

If `a+b+c=3` and `agt0,bgt0,cgt0` then the greatest value of `a^(2)b^(3)c^(2)` is

A

`(3^(4)*2^(10))/(7^(7))`

B

`(3^(10)*2^(4))/(7^(7))`

C

`(3^(2)*2^(12))/(7^(7))`

D

`(3^(12)*2^(2))/(7^(7))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose a, b, c, in R and abc = 1, if A = [[3a, b, c ],[b, 3c, a ],[c, a, 3b]] is such that A ^(T) A = 4 ^(1//3) I and abs(A) gt 0, the value of a^(3) + b^(3) + c^(3) is

If (a^(2)+b^(2))^(3) = (a^(3)+b^(3))^(2) and ab ne 0 then the numerical value of (a)/(b)+ (b)/(a) is equal to-

Find the greatest value of x^3y^4 if 2x + 3y = 7 and x>=0,y>=0 .

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The value of a^(3) + b^(3)+c^(3) is

Statement 1 a+b+c=18(a,b,cgt0) , then the maximum value of abc is 216. Statement 2 Maximum value occurs when a=b=c .

If a, b, c are real and a!=b , then the roots ofthe equation, 2(a-b)x^2-11(a + b + c) x-3(a-b) = 0 are :

If a+b+c=0 and |{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 then find the value of x

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The value a^(2) b^(2) + b^(2) c^(2) + c^(2) a^(2) , is

If a,b, c epsilon R(a!=0) and a+2b+4c=0 then equation ax^(2)+bx+c=0 has

If vec(a) is a unit vector and vec(b)=(2,1,-1) and vec( c )=(1,0,3) . Then the maximum value of [vec(a)vec(b)vec( c )] is…………..