Home
Class 12
MATHS
Let a1, a2, ,a(10) be in A.P. and h1, h...

Let `a_1, a_2, ,a_(10)` be in A.P. and `h_1, h_2, ,h_(10)` be in H.P. If `a_1=h_1=2a n da_(10)=h_(10)=3,t h e na_4h_7` is `2` b. `3` c. `5` d. `6`

A

2

B

3

C

5

D

6

Text Solution

Verified by Experts

The correct Answer is:
D

Given that `a_(1),a_(2),"……"a_(10)` be un AP.
Let d be the common difference of AP.
`:. d=(a_(10)-a_(1))/(10-1)`
`d=(3-2)/(9) " " [" given that " a_(1)=h_(1)=2 " and " a_(10)=h_(10)=3]`
`d=(1)/(9)`
`:.a_(4)=a_(1)+3d=2+(3)/(9)=2+(1)/(3)=(7)/(3)`
Now, `h_(1),h_(2),"......,"h_(10)` be in HP.
So, common difference of respective AP.
`D=((1)/(h_(10))-(1)/(h_(1)))/(10-1)=((1)/(3)-(1)/(2))/(9)=(-1)/(9xx6)-(-1)/(54)`
So, `(1)/(h_(7))=(1)/(h_(1))+6D " " implies (1)/(lambda_(7))=(1)/(2)+6((-1)/(54))=(1)/(2)-(1)/(9)`
`(1)/(h_(7))=(7)/(18)" " implies h_(7)=(18)/(7)`
So, `a_(4)h_(7)=(7)/(3)xx(18)/(7)=6`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^3-2x^2y^2+5x+y-5=0a n dy(1)=1,t h e n

Let a,x,b be in A.P , a,y,b be in G.P and a,z,b be in H.P . If x=y+2 and a=5z , then

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_1, a_2, a_3, be terms of an A.P. if (a_1+a_2+...+a_p)/(a_1+a_2+...+a_q)=(p^2)/(q^2), p!=q ,t h e n(a_6)/(a_(21)) equals

if a,a_1,a_2,a_3,.........,a_(2n),b are in A.P. and a,g_1,g_2,............g_(2n) ,b are in G.P. and h is H.M. of a,b then (a_1+a_(2n))/(g_1*g_(2n))+(a_2+a_(2n-1))/(g_2*g_(2n-1))+............+(a_n+a_(n+1))/(g_n*g_(n+1)) is equal

If a_1, a_2 a_n ,\ a_(n+1) are in GP and a_1>0AAI ,\ t h e n |loga_nloga_(n+2)loga_(n+4)loga_(n+6)loga_(n+8)loga_(n+10)loga_(n+12)loga_(n+14)loga_(n+16)| is equal to- 0 b. nloga_n c. n(n+1)loga_n d. none of these

Suppose four distinct positive numbers a_(1),a_(2),a_(3),a_(4) are in G.P. Let b_(1)=a_(1),b_(2)=b_(1)+a_(2),b_(3)=b_(2)+a_(3)andb_(4)=b_(3)+a_(4) . Statement -1 : The numbers b_(1),b_(2),b_(3),b_(4) are neither in A.P. nor in G.P. Statement -2: The numbers b_(1),b_(2),b_(3),b_(4) are in H.P.

Let a_n be the n^(t h) term of an A.P. If sum_(r=1)^(100)a_(2r)=alpha & sum_(r=1)^(100)a_(2r-1)=beta, then the common difference of the A.P. is -