Home
Class 12
MATHS
If I(n)=int(0)^(pi)(1-sin2nx)/(1-cos2x)d...

If `I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx` then `I_(1),I_(2),I_(3),"….."` are in

A

AP

B

GP

C

HP

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`:. I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx " " implies I_(n)=int_(0)^(pi)(1-sin2nx)/(2sin^(2)x)dx`
`implies I_(n+1)+I_(n-1)-2 I_(n) [ 1-sin2 (n+1)x+1-sin 2(n-1)x-2]`
`=(1)/(2)int_(0)^(pi)(+sin2nx " "]/(sin^(2)x)dx`
`=(1)/(2)int_(0)^(pi)([sin2nx-sin 2 (n+1)x]+[sin2nx-sin 2 (n-1)x])/(sin^(2)x)dx`
`=(1)/(2)int_(0)^(pi)(-2cos(2n+1)xsin(x)+2cos(2n-1)xsinx)/(sin^(2)x)dx`
`=int_(0)^(pi)(sinx[cos(2n-1)x-cos(2n+1)x])/(sin^(2)x)dx`
`=int_(0)^(pi)(2sin2nxsinx)/(sinx)dx=2int_(0)^(pi)sin2nxdx=(2)/(2n)[-cos2nx]_(0)^(pi)`
`=-(1)/(n)(1-1)=0` `:. I_(n+1)+I_(n-1)=2I_(n)`
`implies I_(n-1)+I_(n),I_(n+1)` are in AP.
`:.I_(1),I_(2),I_(3)"...."` are in AP.
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

Evaluate int_(0)^(pi)(xsinx)/(1+cos^(2)x)dx

Prove that I_(1),I_(2),I_(3)"..." form an AP, if (i) I_(n)=int_(0)^(pi)(sin2nx)/(sinx)dx (ii) I_(n)=int_(0)^(pi)((sinnx)/(sinx))^(2)dx .

Evaluation of definite integrals by subsitiution and properties of its : I_(1)=int_(a)^(pi-a)xf(sinx)dx,I_(2)=int_(a)^(pi-a)f(sinx)dx then I_(2)=……..

Fundamental theorem of definite integral : If I_(n)=int_(0)^(pi/4)tan^(n)dx then lim_(ntooo)n(I_(n)+I_(n+2))=.......

int_(0)^((2pi)/(3)) sqrt( 1+ cos 2x ) dx=………

int_(0)^((2pi)/(3)) sqrt( 1+ cos 2x ) dx=………

Let I_(m)=int_(0)^(pi)((1-cos mx)/(1-cos x))dx use mathematical induction to prove that l_(m)= m pi, m=0,1,2 ......

If I_1=int_0^(pi/2)f(sinx)sinxdx and I_2=int_0^(pi/2)f(cosx)cosxdx then I_1/I_2

Method of integration by parts : If I_(n)=int cot^(n)x dx then I_(0)+I_(1)+2(I_(2)+I_(3)+,......+I_(8))+I_(9(+I_(10)=....