Home
Class 12
MATHS
If n is an odd integer greater than or e...

If n is an odd integer greater than or equal to 1, then the value of `n^3 - (n-1)^3 + (n-2)^3 - (n-3)^3 + .... + (-1)^(n-1) 1^3`

A

`((n+1)^(2)(2n-1))/(4)`

B

`((n-1)^(2)(2n-1))/(4)`

C

`((n+1)^(2)(2n+1))/(4)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

Given that n is an odd integer greater than or equal to 1.
`S_(n)=n^(3)-(n-1)^(3)+(n-2)^(3)-"..."+(-1)^(n-1)1^(3)`
`=1^(3)-2^(3)+"...."+(n-2)^(3)-(n-1)^(3)+n^(3)`
[`:.` n is odd integer , so (n-1) is even integer]
`=(1^(3)-2^(3)+"...."+n^(3))-2*2^(3)(1^(3)-2^(3)+"...."+(n-1)/(2) " terms ")`
`=[(n(n+1))/(2)]^(2)-16*[((n-1)/(2)((n-1)/(2)+1))/(2)]^(2)`
`=(n^(2)(n+1)^(2))/(4)-(4(n-1)^(2)(n+1)^(2))/(16)=((n+1)^(2))/(4)[n^(3)-(n-1)^(2)]`
`=(n-1)^(2)/(4)*(2n-1)(1)=((2n-1)(n+1)^(2))/(4)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the series 1*n+2*(n-1)+3*(n-2)+4*(n-3)+....(n−1).2+n.1"

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

Suppose A is a complex number and n in N , such that A^n=(A+1)^n=1, then the least value of n is 3 b. 6 c. 9 d. 12

For all ngt=1 , prove that , (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + ……+ (1)/(n(n+1)) = (n)/(n+1)

Prove by induction that the integer next greater than (3+sqrt(5))^n is divisible by 2^n for all n in N .

Prove that, 1^2 + 2^2 + …..+ n^2 gt (n^3)/(3) , n in N

Prove the following by using the principle of mathematical induction for all n in N 1.3+2.3^2+3.3^3 + ……….+n.3^n = ((2n-1)3^(n+1) + 3)/(4)

By using the principle of mathematical induction , prove the follwing : P(n) : (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + …….+ (1)/(n(n+1)) = (n)/(n+1) , n in N

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .