Home
Class 12
MATHS
If a,b,c are in AP and (a+2b-c)(2b+c-a)...

If a,b,c are in AP and `(a+2b-c)(2b+c-a)(c+a-b)=lambdaabc`, then `lambda` is

A

1

B

2

C

4

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`:.a,b,c` are in AP.
`:. 2b=a+c" " "…..(i)"`
Now, `(a+2b-c)(2b+c-a)(c+a-b)`
`(a+a+c-c)(a+c+c-a)(2b-b)" " [" from Eq.(i) "]`
`=(2a)(2c)(b)=4abc`
`:. Lambda =4`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c,d,e,f are in A.P. then d-b= ……

If a, b, and c are in A.P then (a + 2b -c) . ( 2b +c-a) . (c+a-b) = ............. .

If a,b,c are in AP and a^(2),b^(2),c^(2) are in HP, then

If 2,b,c, 23 are in G.P then (b-c)^(2)+ (c-2)^(2) + (23-b)^(2) = …….

If a,b,c are in HP, then prove that (a+b)/(2a-b)+(c+b)/(2c-b)gt4 .

If a+b+c ne 0 and |{:(a,b,c),(b,c,a),(c,a,b):}|=0 then prove that a=b=c

If a,b,c are three terms in A.P and a^(2), b^(2), c^(2) are in G.P. and a + b + c = (3)/(2) then find a. (where a lt b lt c )

In a triangle ABC, if (a+b+c)(a+b-c)(b+c-a)(c+a-b)=(8a^2b^2c^2)/(a^2+b^2+c^2) then the triangle is

vec(a),vec(b) and vec( c ) are three vector vec(a)ne0 and |vec(a)|=|vec( c )|=1,|vec(b)|=4,|vec(b)xx vec( c )|=sqrt(15) . If vec(b)-2vec( c )=lambda vec(a) then the value of lambda is ………….