Home
Class 12
MATHS
For a positive integerf n, let a(n)=1+(1...

For a positive integerf n, let `a(n)=1+(1)/(2)+(1)/(3)+(1)/(4)+.....+(1)/(2^n-1)`. Then

A

`a(100)lt100`

B

`a(100)gt100`

C

`a(200)gt100`

D

`a(200)lt100`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`:.a(n)=1+(1)/(2)+(1)/(3)+(1)/(4)"......"+(1)/(2^(n)-1)`
`=1+((1)/(2)+(1)/(3))+((1)/(4)+(1)/(5)+(1)/(6)+(1)/(7))+((1)/(8)+"......"+(1)/(15))+"......"+(1)/(2^(n)-1)`
`=1+((1)/(2)+(1)/(2^(2)-1))+((1)/2^(2)+(1)/(5)+(1)/(6)+(1)/(2^(3)-1))+"......"+(1)/(2^(n)-1)`
`:. a(n)lt1+1+"....."+` n terms
`implies a(n)ltn`
`implies a(100)lt100`
Also, `a(n)=1+(1)/(2)+((1)/(3)+(1)/(4))+((1)/(5)+(1)/(6)+(1)/(7)+(1)/(8))+"......"+(1)/(2^(n)-1)`
`=1+(1)/(2)+((1)/(2^(1)+1)+(1)/(2^(2)))+((1)/(2^(2)+1)+(1)/(6)+(1)/(7)+(1)/(2^(3)))+"......"+((1)/(2^(n-1)+1)+"......"+(1)/(2^(n)))-(1)/(2^(n))`
`a(n)gt1+(1)/(2)+(2)/(4)+(4)/(8)+"......."+(2^(n-1))/(2^(n))-(1)/(2^(n))`
`a(n)gt(1-(1)/(2^(n)))+(n)/(2)" " implies a(n)gt(n)/(2)`
`:.a(200)gt100`
Promotional Banner

Similar Questions

Explore conceptually related problems

If S_(n)=1 + (1)/(2) + (1)/(2) + …..+ (1)/(2^(n-1)), (n in N) then …….

Let S_n=1+1/2+1/3+1/4+......+1/(2^n-1). Then

(1)/(1*2)+(1)/(2*3)+(1)/(3*4)+"…."+(1)/(n(n+1)) equals

By using the principle of mathematical induction , prove the follwing : P(n) : (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + …….+ (1)/(n(n+1)) = (n)/(n+1) , n in N

Let a sequence {a_(n)} be defined by a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"....."(1)/(3n) , then

For all ngt=1 , prove that , (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + ……+ (1)/(n(n+1)) = (n)/(n+1)

For a fixed positive integer n , if =|n !(n+1)!(n+2)!(n+1)!(n+2)!(n+3)!(n+2)!(n+3)!(n+4)!| , then show that [/((n !)^3)-4] is divisible by ndot

Using mathematical induction , show that (1-(1)/(2^2))(1-(2)/(3^2))(1-(1)/(4^2)).....(1-(1)/((n+1)^2))=(n+2)/(2(n+1)), forall n in N .

Definite integration as the limit of a sum : lim_(ntooo)(1)/(n)+(1)/(n+1)+(1)/(n+2)+.......+(1)/(2n)

By using the principle of mathematical induction , prove the follwing : (1)/(1.4) + (1)/(4.7) + (1)/(7.10) + ………..+ (1)/((3n - 2)(3n+1)) = (n)/(3n + 1) , n in N