Home
Class 12
MATHS
let 0ltphiltpi/2, x=sum(n=0)^oocos^(2n)p...

let `0ltphiltpi/2`, `x=sum_(n=0)^oocos^(2n)phi`, `y=sum_(n=0)^oosin^(2n)phi` and `z=sum_(n=0)^oocos^(2n)phisin^(2n)phi`

A

`xyz=xz+y`

B

`xyz=xy+z`

C

`xyz=x+y+z`

D

`xyz=yz+x`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`:. 0ltphilt(pi)/(2)`
`:.0sinphi lt1` and `0ltcosphilt1`
`:.x=sum_(n=0)^(oo)cos^(2n) phi=1+cos^(2)phi+cos^(4)phi+"....."+oo`
`=(1)/(1-cos^(2)phi)=(1)/(sin^(2)phi)`
or `sin^(2)phi=(1)/(x)" " "…..(i)"`
and `y=sum_(n=0)^(oo)sin^(2n) phi=1+sin^(2)phi+sin^(4)phi+"....."+oo`
`=(1)/(1-sin^(2)phi)=(1)/(cos^(2)phi)`
or `cos^(2)phi=(1)/(y)" " ".....(ii)"`
From Eqs. (i) and (ii),
`sin^(2)phi+cos^(2)phi=(1)/(x)+(1)/(y)`
`1=(1)/(x)+(1)/(y)`
`:.xy=x+y" " "..........(iii)"`
and `z=sum_(n=0)^(oo)cos^(2n) phisin^(2)phi`
`=1+cos^(2)phisin^(2)phi+cos^(4)phisin^(4)phi+"......."`
`(1)/(1-sin^(2)phicos^(2)phi)=(1)/(1-(1)/(xy))[" from Eqs. (i)and (ii) "]`
`implies z=(xy)/(xy-1)`
`implies xyz=+xy`
and `xyz=z+x+y" " ["from Eq.(iii) "]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x= underset(n=0)overset(oo)Sigma cos^(2n) phi, y= underset(n=0)overset(oo)Sigma sin^(2n) phi and z= underset(n=0)overset(oo)Sigma cos^(2n) phi .sin^(2n) phi , where 0 lt phi lt (pi)/(2) then prove that, xy+z= xyz .

sum_(i=1)^n costheta_i=n then sum_(i=1)^n sintheta_i

Evaluate sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n))) .

sum_(r=1)^n(2r+1)=...... .

If sum_(i=1)^(2n)cos^(-1)x_i=0 then find the value of sum_(i=1)^(2n)x_i

Let k=1^@ , then prove that sum_(n=0)^88 1/(cosnk* cos(n+1)k)=cosk/sin^2k

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of sum_(n=0)^(50)i^(2n+n)! (where i=sqrt(-1)) is

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .