Home
Class 12
MATHS
If the sum to n terms of the series (1)/...

If the sum to n terms of the series `(1)/(1*3*5*7)+(1)/(3*5*7*9)+(1)/(5*7*9*11)+"......"` is `(1)/(90)-(lambda)/(f(n))`, then find `f(0), f(1)` and `f(lambda)`

A

`f(0)=15`

B

`f(1)=105`

C

`f(lambda)=(640)/(27)`

D

`lambda=(1)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`T_(n)=(1)/((2n-1)(2n+1)(2n+3)(2n+5))`
`:.S_(n)=sum_(n=1)^(n)T_(n)a`
`S_(n)=(1)/(6)sum_(n=1)^(n)((2n+5)-(2n-1))/((2n-1)(2n+1)(2n+3)(2n+5))`
`=(1)/(6)sum_(n=1)^(n)((1)/((2n-1)(2n+1)(2n+3))-(1)/((2n+1)(2n+3)(2n+5)))`
`=(1)/(6)((1)/(1*3*5)-(1)/((2n+1)(2n+3)(2n+5)))`
`=(1)/(90)-((1)/(6))/((2n+1)(2n+3)(2n+5))`
`:.lambda=(1)/(6)`
and `f(n)=(2n+1)(2n+3)(2n+5)`
`:.f(0)=15`
`f(1)=105`
and `f(lambda)=f"((1)/(6))((1)/(3)+1)((1)/(3)+3)((1)/(3)+5)=(640)/(27)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum to n terms of the series (1)/(1*3*5*7*9)+(1)/(3*5*7*9*11)+(1)/(5*7*9*11*13)+"......" . Also, find the sum to infinty terms.

Find the sum of n terms of the series 1+4/5+7/(5^2)+10/5^3+dot

Find the sum of n terms of the series 1.3.5.+3.5..7+5.7.9+...

Sum of the n terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(3))+"......." is

Find the sum to n terms of each of the series in 3 × 1^(2) + 5 × 2^(2) + 7 × 3^(2) +.........

The sum of first 9 terms of the series (1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+"........" is

Find the sum to n terms cot^(-1)(3)+cot^(-1)(7)+cot^(-1)(13)+ cot^(-1) (21)+.......

find the 10th term of the AP : 5,1,-3,7,……

Find the sum of the sequence (2)/(9), -(1)/(3), +(1)/(2), -(3)/(4)…… 5 - terms.

If f(x)= 3x^(4)- 5x^(2) + 9 then find f(x-1) .