Home
Class 12
MATHS
Let E=(1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2)...

Let `E=(1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+"......"` Then,

A

`Egt3`

B

`Egt(3)/(2)`

C

`Elt2`

D

`Egt2`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`E=(1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+"......"`
`Elt1+(1)/((1)(2))+(1)/((2)(3))+"......"`
`Elt1+(1-(1)/(2))+((1)/(2)-(1)/(3))+"......"`
`Elt2 " " "…….(i)"`
`Egt1+(1)/((2)(3))+(1)/((1)(3))+"......"`
`Egt1+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+"......"`
`Egt1+(1)/(2),Egt(3)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find sum: (1)/(2) + (1)/(3^(2)) + (1)/(2^(3)) + (1)/(3^(4)) + (1)/(2^(5)) + (1)/(3^(6))+ …..oo

Sum of the n terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(3))+"......." is

int(e^(2x)-1)/(e^(2x)+1)dx=...

Let a sequence {a_(n)} be defined by a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"....."(1)/(3n) , then

(2d^(2)e^(-1))^(3)xx(d^(3)/e)^(-2)=

Find the sum of the series (1^(2)+1)1!+(2^(2)+1)2!+(3^(2)+1)3!+ . .+(n^(2)+1)n! .

Find the sum of n terms of each of the following 1^(2) + ((1^(2) + 2^(2))/(2)) + ((1^(2) + 2^(2) + 3^(2))/(3)) + …..

e_(1) and e_(2) are eccentricities of hyperbola and conjugate hyperbola respectively then prove that (1)/(e_(1)^(2))+(1)/(e_(2)^(2))=1.

Find the sum of series upto n terms ((2n+1)/(2n-1))+3((2n+1)/(2n-1))^2+5((2n+1)/(2n-1))^3+...

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)