Home
Class 12
MATHS
Let a sequence{a(n)} be defined by a(n)=...

Let a sequence`{a_(n)}` be defined by `a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"....."(1)/(3n)`, then

A

`a_(2)=(11)/(12)`

B

`a_(2)=(19)/(20)`

C

`a_(n+1)-a_(n)=((9n+5))/((3n+1)(3n+2)(3n+3))`

D

`a_(n+1)-a_(n)=(-2)/(3(n+1))`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`:.a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"....."(1)/(3n)`
`a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"....."(1)/(n+2n)`
`a_(n)=sum_(alpha=1)^(2n)(1)/(n+alpha)`
`a_(2)=sum_(alpha=1)^(4)(1)/(2+alpha)=(1)/(3)+(1)/(4)+(1)/(5)+(1)/(6)=(20+15+12+10)/(60)`
`=(57)/(60)=(19)/(20)`
Now, `a_(n+1)-a_(n)=((1)/(n+2)+(1)/(n+3)+"......."+(1)/(3n+3))-((1)/(n+1)+(1)/(n+2)+"......+(1)/(3n))`
`=(1)/(3n+1)+(1)/(3n+2)+(1)/(3n+3)-(1)/(n+1)`
`=(1)/(3n+1)+(1)/(3n+2)-(2)/(3(n+1))`
`=(9n^(2)+15n+6+9n^(2)+12n+3-18n^(2)-18n-4)/((3n+1)+(3n+2)+(3n+3))`
`=(9n+5)/((3n+1)+(3n+2)+(3n+3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the sequence t_(n) defined by t_(n)=2*3^(n)+1 is not a GP.

Let the sequence a_(n) be defined as follows: a_(1)= 1, a_(n)= a_(n-1) + 2 " for " n ge 2 . Find first five terms and write corresponding series.

What is the 20^(th) term of the sequence defined by a_(n)= (n-1) (2-n) (3+n) ?

Let S_(n)(x)=(x^(n-1)+(1)/(x^(n-1)))+2(x^(n-2)+(1)/(x^(n-2)))+"....."+(n-1)(x+(1)/(x))+n , then

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_n =a_(n-1)+a_(n-2) , n gt 2 Find (a_(n+1))/a_n for n = 1, 2, 3, 4, 5

By using the principle of mathematical induction , prove the follwing : P(n) : (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + …….+ (1)/(n(n+1)) = (n)/(n+1) , n in N

Find n, ""^(n+5)P_(n+1)=(11)/(2)(n-1)*""^(n+3)P_(n).

The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2),n >2 . Find (a_(n+1))/(a_n), for n = 1, 2, 3, 4, 5.