Home
Class 12
MATHS
Let S(n)(x)=(x^(n-1)+(1)/(x^(n-1)))+2(x^...

Let `S_(n)(x)=(x^(n-1)+(1)/(x^(n-1)))+2(x^(n-2)+(1)/(x^(n-2)))+"....."+(n-1)(x+(1)/(x))+n`, then

A

`S_(1)(x)=1`

B

`S_(1)(x)=x+(1)/(x)`

C

`S_(100)(x)=(1)/(x^(99))((x^(100)-1)/(x-1))^(2)`

D

`S_(100)(x)=(1)/(x^(100))((x^(100)-1)/(x-1))^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`S_(n)(x)=(x^(n-1)+(1)/(x^(n-1)))+2(x^(n-2)+(1)/(x^(n-2)))+"....."+(n-1)(x+(1)/(x))+n`
Let `S'=x^(n-1)+2x^(n-2)+3x^(n-3)+"....."+(n-1)x`
`((S')/(x)=x^(n-2)+2x^(n-3)+"....."+(n-2)x+(n-1))/(S'(1-(1)/(x))=x^(n-1)+x^(n-2)+x^(n-3)+"....."+x-(n-1))`
`S'((x-1))/(x)=(x*x^(n-1)-1)/((x-1))-(n-1)`
`implies S'=(x^(2))/((x-1)^(2))(x^(n-1)-1)-((x-1)x)/((x-1))`
` S''=(1)/(x^(n-1))+(2)/(x^(n-2))+"....."+((n-1))/(x)`
`implies S''=(1)/(x^(n))[x+2x^(2)+"......."+(n-1)x^(n-1)]`
` =(1)/(x^(n))([(n-1)x^(n)-nx^(n-1)+1])/((x-1)^(2))[" similarly as above "]`
`:.S_(n)(x)=S'+S''+n`
`implies S_(n)(x)=(1)/(x^((n-1)))((x^(n)-1)/(x-1))^(2)" " "......(i)"`
For`n=1,S_(1)(x)=1`
`S_(100)(x)=(1)/(x^(99))((x^(100)-1)/(x-1))^(2)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(x)(1-nx^(n-1)-x^(2n)))/((1-x^(n)) sqrt(1-x^(2n)))d=....+c

Let y_(n)(x) = x^(2) + (x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+......(x^(2))/((1+x^(2))^(n-1))and y(x) = lim_(n rarr oo) y_(n) (x) . Discuss the continuity of y_(n)(x)(n = 1, 2, 3....n) and y(x) "at x" = 0

Find value of (x+(1)/(x))^(3)+(x^(2)+(1)/(x^(2)))^(3)+"........"+(x^(n)+(1)/(x^(n)))^(3) .

Find the sum of (x + (1)/(x))^(2), (x^(2) + (1)/(x^(2)))^(2), (x^(3) + (1)/(x^(3)))^(2) , ……..to n terms

Differentiate a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+...+a_(n-1)x+a_(n)

If S_(n)=1 + (1)/(2) + (1)/(2) + …..+ (1)/(2^(n-1)), (n in N) then …….

If lim_(xto 1)(x^(2019)-1)/(x^(n)-1)=-(2019)/(2018) then n=……..

if ((n),(r)) + ((n),(r-1)) = ((n + 1),(x)), then x = ....

x-y relation is given by y=x^(n) calculate the value of n in the following :- (i) y=(x^(2))/(x^(2//3)) (ii) y=(x^(3//2))/(x^(1)) (iii) y=(x^(1//2))/(x^(1//2)) (iv) y=(x^(3//2))/(sqrt(x))

If y=1+x+(x^(2))/(2!)+(x^(2))/(3!)+……+(x^(n))/(n!) then (dy)/(dx) =…………