Home
Class 12
MATHS
A 3 digit palindrome is a 3 digit number...

A 3 digit palindrome is a 3 digit number (not starting with zero) which reads the same backwards as forwards For example, 242. The sim of all even 3 digit palindromes is `2^(n_(1))*3^(n_(2))*5^(n_(3))*7^(n_(4))*11^(n_(5))*` value of `n_(1)+n_(2)+n_(3)+n_(4)+n_(5)` is

Text Solution

Verified by Experts

L:et number of the form palindrome be `alpha beta alpha`.
Now, If `alpha beta alpha` is even, then `alpha` may be `2,4,6,8` and `beta` take values `0,1,2,"……"9`.
So, total number of palindrime (even) `=10xx4=40`
To find the sum of all even 3 digit plaindrome
So, sum of number start with 2
`=(200+2)xx10+(0+1+2+3+"......"+9)xx10=2020+450=2470`
Sum of number srart with `4=(404)xx10+450`
Similarly, sum of number start with `6=(606)xx10+450`
Similarly, sum of number start with `8=(808)xx10+450`
`:.` Total sum `=(202+404+606+808)xx10+450xx4`
`=20200+1800=22000`
`=2^(4)xx5^(3)xx11`
On comparing `2^(4)xx5^(3)xx11^(1)` with
`2^(n_(1))xx3^(n_(2))xx5^(n_(3))xx7^(n_(4))xx11^(n_(5))`
`n_(1)=4,n_(2)=3,n_(3)=0,n_(4)0,n_(5)=1`
Now, `n_(1)+n_(2)+n_(3)+n_(4)+n_(5)=8`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If .^(2n)C_(3):^(n)C_(3)=11:1 , find the value of n.

Find n, ""^(n+5)P_(n+1)=(11)/(2)(n-1)*""^(n+3)P_(n).

Find n, ""^(n+5)P_(n+1)=(11)/(2)(n-1)*""^(n+3)P_(n).

If .^(n)P_(5)=20 .^(n)P_(3) , find the value of n.

Find the sum of series upto n terms ((2n+1)/(2n-1))+3((2n+1)/(2n-1))^2+5((2n+1)/(2n-1))^3+...

Determine n if ""^(2n)C_(3):""^(n)C_(3)=11:1

Consider the numbers 4^(n) , where n is a natural number. Check whether there is any value of n for which 4^(n) ends with the digit zero.

The total number of five-digit numbers of different digits in which the digit in the middle is the largest is a. sum_(n=4)^9^n P_4 b. 33(3!) c. 30(3!) d. none of these

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

((n),(0))-((n),(1))+((n),(2))-((n),(3))+((n),(4))-((n),(5)).........+(-1)^(n)((n),(n))=....... .