Home
Class 12
MATHS
If n is a positive integer satisfying th...

If n is a positive integer satisfying the equation `2+(6*2^(2)-4*2)+(6*3^(2)-4*3)+"......."+(6*n^(2)-4*n)=140` then the value of n is

Text Solution

Verified by Experts

`:.2+(6*2^(2)-4*2)+(6*3^(2)-4*3)+"......."+(6*n^(2)-4*n)=140`
`2+6(2^(2)+3^(2)+"......."+n^(2))-4*(2+3+"....."+n)=140`
`implies 2+6((n(n+1)(2n-1))/(6)-1)-4((n(n+1))/(2)-1)=140`
`implies 2+n(n+1)(2n+1)-6-2n(n+1)+4=140`
`implies n(n+1)(2n+1)-2n(n+1)-140=0`
`implies 2n^(3)3n^(2)+n-2n^(2)-2n-140=0`
`implies 2n^(3)+n^(2)-n-140=0`
`implies (n-4)+(2n^(2)+9n+35)=0`
`implies n=4 " or " 2n^(2)+9n+35=0`
`implies 2n^(2)+9n+35=0`
`implies n=(-9pmsqrt(81-280))/(4)`
`:. n=(9pmsqrt(-199))/(4) " " [" complex values "]`
Only positive integer value of n is 4.
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of positive integers satisfying the inequality .^(n+1)C(n-2)-.^(n+1)C(n-1)<=100 is

The positive integer value of n >3 satisfying the equation 1/(sin(pi/n))=1/(sin((2pi)/n))+1/(sin((3pi)/n))i s

Let n be a positive integer such that sin(pi/(2n))+cos(pi/(2n))=(sqrt(n))/2 Then

If a root of the equation n^(2)sin^(2)x-2sinx-(2n+1)=0 lies in [0,pi/2] the minimum positive integer value of n is

For any positive integer n, prove that n^(3) - n is divisible by 6.

Find the sum of the series 1*n+2*(n-1)+3*(n-2)+4*(n-3)+....(n−1).2+n.1"

Find the sum: 1^(1) -2^(2) + 3^(2)-4^(2)+ 5^(2)- 6^(2)+ ……up to n terms

For a fixed positive integer n , if =|n !(n+1)!(n+2)!(n+1)!(n+2)!(n+3)!(n+2)!(n+3)!(n+4)!| , then show that [/((n !)^3)-4] is divisible by ndot

Prove by induction that if n is a positive integer not divisible by 3. then 3^(2n)+3^(n)+1 is divisible by 13.