Home
Class 12
MATHS
If 1/1^2+1/2^2+1/3^2+...oo=pi^2/6 then v...

If `1/1^2+1/2^2+1/3^2+...oo=pi^2/6` then value of `1-1/2^2+1/3^2-1/4^2+...oo=`

Text Solution

Verified by Experts

(i) `(1)/(1^(2))+(1)/(2^(2)) +(1)/(3^(2) )+ ........+ infty =(pi^(2))/( 6)" "....(i) `
` therefore " "(1)/(1^(2)) +(1)/( 3 ^(2)) +(1)/( 5^(2)) +....+ infty `
` " " = ((1)/(1^(2))+ (1)/(2^(2))+(1)/(3^(2)) +(1)/(4^(2)) + ....+ infty ) -( (1)/(2^(2))+ ( 1) /(4^(2)) +(1)/( 6^(2)) + .......+ infty ) `
` =(pi^(2) )/(6) -(1)/(4) (pi^(2))/( 6) =(3)/(4) xx (pi^(2))/( 6) =(pi^(2))/( 8) `
` (ii) 1-( 1)/(2^(2)) +(1)/(3^(2) )-(1)/( 4^(2) )+ ....+ infty =(( 1)/(1^(2) ) -(1)/(3^(3) ) + .....+ -(1)/(2^(2)) -(1)/(2^(2)) + .....infty ) `
` " " =( pi^(2))/(8) -(1)/(4) xx ( pi ^(2))/( 6) =( pi ^(2))/( 12)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

1+2/3+6/(3^2)+10/(3^3)+14/(3^4)+...oo=

Suppose 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6 , then the value of x^(-2) + y^(-2) equals

Find sum: (1)/(2) + (1)/(3^(2)) + (1)/(2^(3)) + (1)/(3^(4)) + (1)/(2^(5)) + (1)/(3^(6))+ …..oo

Sum of the series 1-(1)/(2)+1/(2^2)-1/(2^3)+............oo=.........

Find 1+1/2+1/4+1/8+ …. Upto oo .

Find 1+1/2+1/4+1/8+ …. Upto oo .

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+(x^(4))/(4!)+...oo, then find the value of (dy)/(dx) .

if f(x)=(9/(log_2 (3-2x))-1)^(1/3) then the value of a which satisfies f^-1(2a-4)=1/2 is

1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6