Home
Class 12
MATHS
Evaluate S=sum(n=0)^n(2^n)/((a^(2^n)+1)...

Evaluate `S=sum_(n=0)^n(2^n)/((a^(2^n)+1)` (where `a>1)`.

Text Solution

Verified by Experts

`S=sum_(n=0)^(oo)(2^(n))/(a^(2n)+1)(agt1)`
`S_(n)=sum_(n=0)^(n)(2^(n))/(a^(2n)+1)`
`=(1)/(a+1)+(2)/(a^(2)+1)+(4)/(a^(4)+1)+(8)/(a^(8)+1)+"........"+(2^(n))/(a^(2^n)+1)`
`=(1)/(1+a)+(2)/(1+a^(2))+(4)/(1+a^(4))+(8)/(1+a^(8))+"........"+(2^(n))/(1+a^(2^n))`
`=(-(1)/(1-a)+(1)/(1-a))(1)/(1+a)+(2)/(1+a^(2))+(4)/(1+a^(4))+(8)/(1+a^(8))+"........"+(2^(n))/(1+a^(2^n))`
`=(1)/(a-1)+((1)/(1-a)+(1)/(1+a))+(2)/(1+a^(2))+(4)/(1+a^(4))+"........"+(2^(n))/(1+a^(2^n))`
`=(1)/(a-1)+((2)/(1-a^(2))+(2)/(1+a^(2)))+(4)/(1+a^(4))+"........"+(2^(n))/(1+a^(2^n))`
`" " vdots " "vdots " " vdots " "`
`S_(n)=(1)/(a-1)+(2^(n+1))/(1-a^(2^n+1))`
`S=lim_(n to oo)S_(n)=lim_(n to oo)((1)/(a-1)+(2^(n+1))/(1-a^(2^n+1)))`
`=lim_(n to oo)((1)/(a-1)+((2^(n+1))/(a^(2^n+1)))/((1)/(a^(2^n+1))-1))=(1)/(a-1)+(0)/(0-1)=(1)/(a-1)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n=0)^(50)i^(2n+n)! (where i=sqrt(-1)) is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

......... is the minimum value of n such that (1+i)^(2n) = (1 - i)^(2n) . Where n in N .

The nth term of a series is given by t_(n)=(n^(5)+n^(3))/(n^(4)+n^(2)+1) and if sum of its n terms can be expressed as S_(n)=a_(n)^(2)+a+(1)/(b_(n)^(2)+b) where a_(n) and b_(n) are the nth terms of some arithmetic progressions and a, b are some constants, prove that (b_(n))/(a_(n)) is a costant.

Evaluate overset(13) underset(n=1) sum (i^(n)+i^(n+1)) , where n in N .

Evaluate sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n))) .

Evaluate: (lim)_(n->oo)[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

sum_(r=1)^n(2r+1)=...... .

Show using mathematical induciton that n!lt ((n+1)/(2))^n . Where n in N and n gt 1 .

Find the integral solution for n_(1)n_(2)=2n_(1)-n_(2), " where " n_(1),n_(2) in "integer" .