Home
Class 12
MATHS
Let a,b,c be in A.P. and |a|lt1,|b|lt1|c...

Let `a,b,c` be in A.P. and `|a|lt1,|b|lt1|c|lt1.` if `x=1+a+a^(2)+ . . . . oo`,
`y=1+b+b^(2)+ . . . .oo`,
`z=1+c+c^(2)+ . . . oo`, then `x,y,z` are in

A

AP

B

GP

C

HP

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

Clearly, `x=(1)/(1-a),y=(1)/(1-b)" and "z=(1)/(1-c)`
Since, a,b,c are in AP.
`implies 1-a,1-b,1-c` ,are also in AP.
`implies (1)/(1-a),(1)/(1-b),(1)/(1-c)` are in HP.
`:. X,y,z` are in HP.
Promotional Banner

Similar Questions

Explore conceptually related problems

|a| lt 1 and |b| lt 1, x=1 + a + a^(2) + ……. and y=1 + b + b^(2) + …..,Prove that, 1 + ab + a^(2) b^(2) + ….= (xy)/(x+y-1)

If a, b, c are in G.P. and a^(1/x) =b^(1/y)=c^(1/z) , prove that x, y , x are in A.P

Let a,x,b be in A.P , a,y,b be in G.P and a,z,b be in H.P . If x=y+2 and a=5z , then

If x=a + (a)/(r ) + (a)/(r^(2)) + …..oo, y= b - (b)/(r ) + (b)/(r^(2))-……..oo and z= c + (c )/(r^(2)) + (c )/(r^(4))+ ….oo then prove that (xy)/(z)= (ab)/(c )

If a,b,c are three terms in A.P and a^(2), b^(2), c^(2) are in G.P. and a + b + c = (3)/(2) then find a. (where a lt b lt c )

Let f(x) = {{:(a sin^(2n)x,"for",x ge 0 and n rarr oo),(b cos^(2m)x - 1,"for",x lt 0 and m rarr oo):} then

If x=1+(log)_a b c , y=1+(log)_b c a and z=1+(log)_c a b , then prove that x y z=x y+y z+z x

If a(1/b+1/c),b(1/c+1/a),c(1/a+1/b) are in A.P., prove that a,b,c are in A.P.

If A = {x: x in W, x lt 2}, B= {x: x in N, 1 lt x lt 5} and C= {3, 5} , then find A xx (B nn C)

If a^(x)=b, b^(y)=c,c^(z)=a, prove that xyz = 1 where a,b,c are distinct numbers