Home
Class 12
MATHS
If an=3/4-(3/4)^2+(3/4)^3+...(-1)^(n-1)(...

If `a_n=3/4-(3/4)^2+(3/4)^3+...(-1)^(n-1)(3/4)^n` and `b_n=1-a_n`, then find the minimum natural number n, such that `b_n>a_n`

Text Solution

Verified by Experts

`:.B_(n)=1-A_(n)gtA_(n)implies A_(n)lt(1)/(2)`
Now, `A_(n)=((3)/(4)(1-(-(3)/(4))^(n)))/(1+(3)/(4))lt(1)/(2) implies (-(3)/(4))^(n)gt -(1)/(6)`
Obviously, it is true for all even values of n.
But for `n=1,-(3)/(4)lt - (1)/(6)`
`n=3(-(3)/(4))^(3)=-(27)/(24)lt - (1)/(6)`
`n=5,(-(3)/(4))^(5)= -(243)/(1024)gt -(1)/(6)`
which is true for n=7 obviously, `n_(0)=7`
Aliter `B_(n)=1-A_(n)gtA_(n)`
`implies A_(n)lt(1)/(2)implies (3)/(4)((1-(-(3)/(4))^(n)))/(1+(3)/(4))lt(1)/(2) implies (-(3)/(4))^(n)gt -(1)/(6)`
Obviously, it is true for all even values of n.
But for `n=1,-(3)/(4)lt -(1)/(6)`
`n=3,(-(3)/(4))^(3)=-(27)/(64)lt - (1)/(6)`
`n=5,(-(3)/(4))^(5)= -(243)/(1024)lt -(1)/(6)`
and for `n=7 implies (-(3)/(4))^(7)=-(2187)/(12288)gt -(1)/(6)`
Hence, minimum natural number `n_(0)=7`.
Promotional Banner

Similar Questions

Explore conceptually related problems

1^(3)+2^(3)+3^(3)+. . .+n^(3)=((n(n+1))/(2))^(2) .

If vec(A) = (2,-3,1) and vec(B) = (3,4,n) are mutually perpendicular then find the value of n .

Show that (n^5)/(5) + (n^3)/(3) + (7n)/(15) is a natural number for all n in N

If X={4^(n)-3n-1:ninN}andy={9(n-1):ninN} , then X uu Y equals

Let S_n=1+1/2+1/3+1/4+......+1/(2^n-1). Then

Find the value of n such that (""^(n)P_(4))/(""^(n-1)P_(4))=(5)/(3), n gt 4

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

If a_1, a_2, a_3 ......a_n (n>= 2) are read and (n-1) a_1^2 -2na_2 < 0 then prove that at least two roots of the equation x^n+a_1 x^(n-1) +a_2 x^(n-2) +......+a_n = 0 are imaginary.

(nP_4)/((n-1)P_4) =5/3 then n = ......... (where n gt 4 )

Use the principle of mathematical induction : A sequence a_1, a_2, a_3,…… is defined by letting a_1 = 3 and a_k = 7a_(k-1) , for all natural numbers k > 2 . Show that a_n = 3.7^(n-1) , for all natural numbers .