Home
Class 12
MATHS
If a1, a2, a3, be terms of an A.P. if (...

If `a_1, a_2, a_3, ` be terms of an A.P. if `(a_1+a_2+...+a_p)/(a_1+a_2+...+a_q)=(p^2)/(q^2), p!=q ,t h e n(a_6)/(a_(21))` equals

A

`(41)/(11)`

B

`(7)/(2)`

C

`(2)/(7)`

D

`(11)/(41)`

Text Solution

Verified by Experts

The correct Answer is:
D

`:.((p)/(2)[2a_(1)+(p-1)d])/((q)/(2)[2a_(1)+(q-1)d])=(p^(2))/(q^(2))`
`implies (2a_(1)+(p-1)d)/(2a_(1)+(q-1)d)=(p)/(q)implies (a_(1)+((p-1)/(2))d)/(a_(1)+((q-1)/(2))d)=(p)/(q)`
For `(a_(6))/(a_(21)),p=11" and " q=41 implies(a_(6))/(a_(21))=(11)/(41)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

Let a_1, a_2, ,a_(10) be in A.P. and h_1, h_2, ,h_(10) be in H.P. If a_1=h_1=2a n da_(10)=h_(10)=3,t h e na_4h_7 is 2 b. 3 c. 5 d. 6

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

Let A be the set of 4-digit numbers a_1 a_2 a_3 a_4 where a_1 > a_2 > a_3 > a_4 , then n(A) is equal to

If pth,qth and rth terms of an A.P. are a, b, c respectively, then show that a(q-r)+b(r-p)+c(p-q)=0

Find the sum of first 24 terms of the A.P. a_(1) , a_(2), a_(3) ...., if it is know that a_(1) + a_(5) + a_(10) + a_(15) + a_(20) + a_(24) = 225

if a,a_1,a_2,a_3,.........,a_(2n),b are in A.P. and a,g_1,g_2,............g_(2n) ,b are in G.P. and h is H.M. of a,b then (a_1+a_(2n))/(g_1*g_(2n))+(a_2+a_(2n-1))/(g_2*g_(2n-1))+............+(a_n+a_(n+1))/(g_n*g_(n+1)) is equal

If a_1,a_2,a_3….a_r are in G.P then show that |{:(a_(r+1),a_(r+5),a_(r+9)),(a_(r+7),a_(r+11),a_(r+15)),(a_(r+11),a_(r+7),a_(r+21)):}| is independent of r

Let a_(1),a_(2),"...." be in AP and q_(1),q_(2),"...." be in GP. If a_(1)=q_(1)=2 " and "a_(10)=q_(10)=3 , then

Sum of the first p,q and r terms of an A.P. are a, b and c, respectively. Prove that, (a)/(p) (q-r) + (b)/(q) (r-p) + (c )/(r ) (p-q) = 0