Home
Class 12
MATHS
If a1, a2, a3,.....an are in H.P. and ...

If `a_1, a_2, a_3,.....a_n` are in H.P. and `a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n`, then k is equal to

A

`n(a_(1)-a_(n))`

B

`(n-1)(a_(1)-a_(n))`

C

`na_(1)a_(n)`

D

`(n-1)a_(1)a_(n)`

Text Solution

Verified by Experts

The correct Answer is:
D

`(1)/(a_(2))-(1)/(a_(1))=(1)/(a_(3))-(1)/(a_(2))="....."=(1)/(a_(n))-(1)/(a_(n-1))=d" "[" say "]`
Then `a_(1)a_(2)=(a_(1)-a_(2))/(d),a_(2)a_(3)=(a_(2)-a_(3))/(d)".....",a_(n-1)a_(n)=(a_(n-1)-a_(n))/(d)`
`:.a_(1)a_(2)+a_(2)a_(3)+"....."+a_(n-1)a_(n)=(a_(1)-a_(n))/(d)`
Also, `(1)/(a_(n))=(1)/(a_(1))+(n-1)d implies (a_(1)-a_(n))/(d)=(n-1)a_(1)a_(n)`
`:.a_(1)a_(2)+a_(2)a_(3)+"......"+a_(n-1)a_(n)=(n-1)a_(1)a_(n)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),".....",a_(n) are in HP, than prove that a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)

if a,a_1,a_2,a_3,.........,a_(2n),b are in A.P. and a,g_1,g_2,............g_(2n) ,b are in G.P. and h is H.M. of a,b then (a_1+a_(2n))/(g_1*g_(2n))+(a_2+a_(2n-1))/(g_2*g_(2n-1))+............+(a_n+a_(n+1))/(g_n*g_(n+1)) is equal

Let A be the set of 4-digit numbers a_1 a_2 a_3 a_4 where a_1 > a_2 > a_3 > a_4 , then n(A) is equal to

If a_1, a_2, a_3 ......a_n (n>= 2) are read and (n-1) a_1^2 -2na_2 < 0 then prove that at least two roots of the equation x^n+a_1 x^(n-1) +a_2 x^(n-2) +......+a_n = 0 are imaginary.

Let a_1, a_2, ,a_(10) be in A.P. and h_1, h_2, ,h_(10) be in H.P. If a_1=h_1=2a n da_(10)=h_(10)=3,t h e na_4h_7 is 2 b. 3 c. 5 d. 6

If a_1,a_2,a_3,.....a_n.... are in G.P. then the determinant Delta=|[loga_n,loga_(n+1),loga_(n+2)],[loga_(n+3),loga_(n+4),loga_(n+5)],[loga_(n+6),loga_(n+7),loga_(n+8)]| is equal to-

If a_(1),a_(2),a_(3),"........",a_(n) are in AP with a_(1)=0 , prove that (a_(3))/(a_(2))+(a_(4))/(a_(3))+"......"+(a_(n))/(a_(n-1))-a_(2)((1)/(a_(2))+(1)/(a_(3))"+........"+(1)/(a_(n-2)))=(a_(n-1))/(a_(2))+(a_(2))/(a_(n-1)) .

If a_1, a_2 a_n ,\ a_(n+1) are in GP and a_1>0AAI ,\ t h e n |loga_nloga_(n+2)loga_(n+4)loga_(n+6)loga_(n+8)loga_(n+10)loga_(n+12)loga_(n+14)loga_(n+16)| is equal to- 0 b. nloga_n c. n(n+1)loga_n d. none of these

Consider two geometric progressions a_1,a_2,a_3,......a_0 & b_1, b_2, b_3,....b_n with a_r=1/b_r=2^(r-1) and an- other sequence t_1,t_2,t_3,......t_n . such that t_r = cot^-1 (2a_r + b_r)then lim_(n->oo)sum_(r=1)^nt_r is -

If a_1, a_2, a_3, be terms of an A.P. if (a_1+a_2+...+a_p)/(a_1+a_2+...+a_q)=(p^2)/(q^2), p!=q ,t h e n(a_6)/(a_(21)) equals