Home
Class 12
MATHS
If x, y, z are in A.P. and tan^(-1)x ,...

If `x, y, z` are in A.P. and `tan^(-1)x , tan^(-1)y` and `t a n^(-1)z` are also in A.P., then
(1) `2x""=""3y""=""6z` (2) `6x""=""3y""=""2z` (3) `6x""=""4y""=""3z` (4) `x""=""y""=""z`

A

`2x=3y=6z`

B

`6x=3y=2z`

C

`6x=4y=3z`

D

`x=y=z`

Text Solution

Verified by Experts

The correct Answer is:
D

`:.` x,y,z are in AP.
Let `x=y-d,z=y+d " " "…….(i)"`
Also, given `tan^(-1)x,tan^(-1)y,tan^(-1)z` are in AP.
`:.2tan^(-1)y=tan^(-1)x+tan^(-1)z`
`implies tan^(-1)((2y)/(1-y^(2)))=tan^(-1)((x+z)/(1-xz))`
`implies (2y)/(1-y^(2))=(x+z)/(1-xz) implies (2y)/(1-y^(2))=(2y)/(1-(y^(2)-d^(2)))`
`implies y^(2)=y^(2)-d^(2)" " [" fromEq.(i) "]`
`:. d=0`
From Eq. (i), x=y and z=y
`:. x=y=z`
Aliter
`:. x,y,z" are in AP. "" " "…….(i)"`
`:. 2y=x+z" " "........(ii)"`
Also, `tan^(-1)x,tan^(-1)y,tan^(-1)z` are in AP.
`:.2tan^(-1)y=tan^(-1)x+tan^(-1)z`
`implies tan^(-1)((2y)/(1-y^(2)))=tan^(-1)((x+z)/(1-xz))`
`implies (2y)/(1-y^(2))=(x+z)/(1-xz)=(2y)/(1-xz)" "[" from Eq.(ii) "]`
`implies y^(2)=zx`
`:. x,y,z " are in GP. "" "".........(iii)"`
From Eqs. (i) and (ii) x,y,z are in AP and also in GP, then x=y=z.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c are in G.P. and a^(1/x) =b^(1/y)=c^(1/z) , prove that x, y , x are in A.P

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x+y+z=xyz , then

Prove the followings : If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=xyz .

x,y and z are in A.P. A_(1) is the A.M. of x and y. A_(2) is the A.M of y and z. Prove that the A.M. of A_(1) and A_(2) is y.

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x^2 + y^2+z^2 = 1, & \ x+y+z=sqrt(3) , then

If x, 2y and 3z are in AP where the distinct numbers x,y and z are in GP, then the common ratio of the GP is

The angle between the lines 2x=3y=-z and 6x=-y=-4z is

Let a,x,b be in A.P , a,y,b be in G.P and a,z,b be in H.P . If x=y+2 and a=5z , then

Prove that the lines x=2 (y-1)/(3) = (z-2)/(1) and x = (y-1)/(1) = (z+1)/(3) are skew lines.

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((z y)/(x r))+tan^(-1)((x z)/(y r))+tan^(-1)((x y)/(z r)) is equal to pi (b) pi/2 (c) 0 (d) none of these