Home
Class 12
MATHS
Let S(n)=sum(k=1)^(4n)(-1)^((k(k+1))/(2)...

Let `S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/(2))*k^(2)`, then `S_(n)` can take value

A

1056

B

1088

C

1120

D

1332

Text Solution

Verified by Experts

The correct Answer is:
A, D

`S_(n)=-1^(2)-2^(2)+3^(2)+4^(2)-5^(2)-6^(2)+7^(2)+8^(2)-"........"+(4n-1)^(2)+(4n)^(2)`
`=(3^(2)-1^(2))+(4^(2)-2^(2))+(7^(2)-5^(2))+(8^(2)-6^(2))+"........"+[{(4n-1)^(2)-(4n-3)^(2)}+{(4n)^(2)-(4n-2)^(2)}]`
`=4[2+3+6+7+10+11+"......"+(4n-2)+(4n-1)]`
`=8{(1+3+5+"......"+(2n-1)}+4{3+7+11+"........."+(4n-1)}`
`=16n^(2)+4n=4n(4n+1),n inN`
Satisfied by a and d where n=8,9, respectively.
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1 The sum of the series 1+(1+2+4)+(4+6+9)+(9+12+16)+"……."+(361+380+400) is 8000. Statement 2 sum_(k=1)^(n)(k^(3)-(k-1)^(3))=n^(3) for any natural number n.

If S_(n)=1 + (1)/(2) + (1)/(2) + …..+ (1)/(2^(n-1)), (n in N) then …….

If alpha=e^(i2pi//7)a n df(x)=a_0+sum_(k=1)^(20)a_k x^k , then prove that the value of f(x)+f(alpha, x)++f(alpha^6x) is independent of alphadot

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

If lim+(n to oo)sum_(r=1)^(n)(kr)/(1xx3xx5xx….xx(2r-1)xx(2r+1))=1 then k^(2) is ……

Evaluate S=sum_(n=0)^n(2^n)/((a^(2^n)+1) (where a>1) .

((n),(r)) = (""^(n)P_(r))/(K), then K = ......

Evaluate sum_(k-1)^11(2+3^k)

For the equilibrium N_(2)O_(4(g))hArr 2NO_(2(g)) , the K_(p) and K_(c ) values are related as