Home
Class 12
MATHS
If (10)^(9)+2(11)^(1)(10)^(8)+3(11)^(2)(...

If `(10)^(9)+2(11)^(1)(10)^(8)+3(11)^(2)(10)^(7)+........+(10)(11)^(9)=k(10)^(9)`, then k is equal to

A

100

B

110

C

`(121)/(10)`

D

`(441)/(100)`

Text Solution

Verified by Experts

The correct Answer is:
A

The given series can be written as
`k = 1+2(11/10)+3(11/10)^2""+...+9(11/10)^8""+10(11/10)^9" ...(i)"`
On multiplying both sides by `(11/10)`, then
`(11k)/10=(11/10)+2(11/10)^2 +3(11/10)^3""+...+9(11/10)^9""+10(11/10)^10" ...(ii)"`
Now, on subtracting Eq. (ii) frm Eq. (i), then
`-k/10=(11/10)+(11/10)^2""+...+(11/10)^2-10(11/10)^10`
`=(1*{(11/10)^10-1})/((11/10-1))-10(11/10)^10`
`rArr" "k = -100*{(11/10)^10-1}+100(11/10)^10 = 100`
Promotional Banner

Similar Questions

Explore conceptually related problems

((10),(1)) + ((10),(2))+((11),(3))+((12),(4))+((13),(5)) = ........

The value of |(.^(10)C_(4) ^(10)C_(5) ^(11)C_(m)), ( .^(11)C_(6) ^(11)C_(7) ^(12)C_(m+2)), (. ^(12)C_(8) ^(12)C_(9) ^(13)C_(m+4))| is equal to zero when m is

if 1/(7!)+1/(9!) =x/(10!) then find x.

(10!)/(8!) = 9 .

If int (10x^(9)+a10^(x-1))/(x^(10)+10^(x)) dx=log(x^(10)+10^(x))+c then a=......

If (1)/(8!)+(1)/(9!)=(x)/(10!) , find x.

10 C_(1)+10 C_(3) +10 C_(5) +10 C_(7) +10 C_(9) = …….

Young's modulus of steel is 1.9 xx 10^(11)(N)/(m^(2)) . When expressed in ("dyne")/(cm^(2)) of it will be equal to (IN = 10^(5) "dyne" , 1 m^(2)=10^(4) cm^(2))

Find the sum to n terms of the series (1)/(1*3*5*7*9)+(1)/(3*5*7*9*11)+(1)/(5*7*9*11*13)+"......" . Also, find the sum to infinty terms.