Home
Class 12
MATHS
IF x=1+logabc,y=1+logbca,z=1+logcab, pro...

IF `x=1+log_abc,y=1+log_bca,z=1+log_cab`, prove that xyz=xy+yz+zx.

Text Solution

Verified by Experts

The correct Answer is:
xyz=xy+yz+zx
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=1+(log)_a b c , y=1+(log)_b c a and z=1+(log)_c a b , then prove that x y z=x y+y z+z x

Let log_(c)ab = x, log_(a)bc = y and log_(b) ca = z . Find the value of (xyz - x - y - z) .

If a^x=b , b^y=c ,c^z=a and x=(log)_b a^2, y=(log)_c b^3,z=(log)_a c^k , where a,b, c >0 and a , b , c!=1 then k is equal to a. 1/5 b. 1/6 c. (log)_(64)2 d. (log)_(32)2

We can write log"" x/y = log (x.y^(-1 )) Can you prove that log"" x/y = log x - logy using product and power rules.

Solve the system of equations: (log)_a x(log)_a(x y z)=48, (log)_a y log_a(x y z)=12 , a >0,\ a!=1(log)_a z log_a(x y z)=84\

Find x if 2log5+1/2 log9 - log3 = logx

For positive numbers x ,\ y\ a n d\ z the numerical value of the determinant |1(log)_x y(log)_x z(log)_y x1(log)_y z(log)_z x(log)_z y1| is- a. 0 b. logx y z c. "log"(x+y+z) d. logx\ logy\ logz

If log_2 log_3 log_4 (x+1) =0, then x is :-

Prove log_(b)b = 1

The area of the region bounded by the curve y = log x, y = log |x| ,y= | log x| and y=|log |x|| is ….Sq. units