Home
Class 12
MATHS
If a matricx [{:(0,2beta,gamma),(alpha,b...

If a matricx `[{:(0,2beta,gamma),(alpha,beta,-gamma),(alpha,-beta,gamma):}]` is a orthogonal matrix then ………

Text Solution

Verified by Experts

Let `A = [(0, 2beta,gamma),(alpha,beta,-gamma),(alpha,-beta,gamma)],then A' [(0,alpha,alpha),(2beta,beta,-beta),(gamma,gamma,gamma)]`
since A is orthogonal.
`therefore" " A A'=I`
`rArr [(o,2beta,gamma),(alpha,beta,-gamma),(alpha,-beta, gamma)][(0,gamma,gamma),(2beta,beta,-beta),(gamma,-gamma,gamma)]=[(1,0,0),(0,1,0),(0,0,1)]`
Equating the corresponding elements, we get
`4beta^(2)+gamma^(2)=1`
`2beta^(2)-gamma^(2)=0`
and `alpha^(2)+beta^(2)+gamma^(2)=1`
From Eqs. (i) and (ii), we get ltbegt `beta^(2)=(1)/(2) and gamma^(2)=(1)/(3)`
From Eq. (iii)
`alpha^(2)=1-beta^(2)-gamma^(2)=-(1)/(6)-(1)/(3)=(1)/(2)`
Hence, `2alpha^(2)+6beta^(2)+3gamma^(2)=2xx(1)/(2)+6xx(1)/(6)+3xx(1)/(3)=3`
Aliter
the rows of matrix A are unit orthogonal vectors
`vecR_(1).vecR_(2)=0 rArr 2beta^(2)-gamma^(2)=0 rArr 2beta^(2)=gamma^(2)`
`vecR_(2).vecR_(3)=0 rArr alpha^(2)-beta^(2)-gamma^(2)=0 rArr beta^(2) + gamma^(2) = alpha^(2)` and `vecR_(1).vecR_(3)=1 rArr alpha^(2)+beta^(2)+gamma^(2)=1`
from Eqs. (i),(ii) and (iii), we get `alpha^(2)=(1)/(2),beta^(2)=(1)/(6) and gamma^(2)=(1)/(3)`
`therefore 2alpha^(2)+6beta^(2)+3gamma^(2)=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(alpha,beta),(gamma,-alpha):}] is such that A^(2)=I , then ……

If p''(x) has real roots alpha,beta,gamma . Then , [alpha]+[beta]+[gamma] is

If alpha, beta, gamma are the roots of the cubic x^(3)-px^(2)+qx-r=0 Find the equations whose roots are (i) beta gamma +1/(alpha), gamma alpha+1/(beta), alpha beta+1/(gamma) (ii) (beta+gamma-alpha),(gamma+alpha-beta),(alpha+beta-gamma) Also find the valueof (beta+gamma-alpha)(gamma+alpha-beta)(alpha+beta-gamma)

If alpha,beta,gamma in R, alpha+beta+gamma=4 " and " alpha^(2)+beta^(2)+gamma^(2)=6 , the number of integers lie in the exhaustive range of alpha is ……… .

Explain alpha beta and gamma rays

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

Using properties of determinants in Exercise 11 to 15 prove that |{:(alpha,alpha^2,beta+gamma),(beta,beta^2,gamma+alpha),(gamma,gamma^2,alpha+beta):}|=(beta-gamma)(gamma-alpha)(alpha+beta+gamma)(alpha-beta)

Prove that |((beta+gamma-alpha-delta)^4,(beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4,(gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4,(alpha+beta-gamma-delta)^2,1)|=-64(alpha-beta)(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)(gamma-delta)

If alpha,beta,gamma be the angles which a line makes with the coordinates axes, then