Home
Class 12
MATHS
If A=[(k,l),(m,n)] and kn!=lm, show that...

If `A=[(k,l),(m,n)]` and `kn!=lm,` show that `A^(2)-(k+n)A+(kn-lm)l=O.` Hence, find `A^(-1)`

Text Solution

Verified by Experts

We, have, `A[(k,l),(m,n)]`, then `|A|=|(k,l),(m,n)|`
`=kn-ml!=0`
`therefore" " A^(-1) exists.`
Now, `A^(2)=A.A=[(k,l),(m,n)][(k,l)(m,n)=[(k^(2)+lm,kl+ln),(mk+nm,ml+n^(2))]`
`therefore " " A^(2)-(k+n)A+(kn-lm)I`
`= [(k^(2)+lm,kl+ln),(mk+nm,ml+n^(2))]-[(k-n)[(k,l),(m,n)]+(kn-lm)[(1,0),(0,1)]`
`= [(k^(2)+lm,kl+ln),(mk+nm,ml+n^(2))][(k^(2)+nk,kl+nl),(km+nm,kn+n^(2))] +[(kn-lm,0),(0,kn-lm)]`
`[(k^(2)+lm-K^(2)-nk+kn-lm,kl+ln-kl-ln),(mk+nm-km-nm,ml+n^(2)-kn-n^(2)+kn-lm)]`
`[(0,0),(0,0)]=O`
`AsA^(2)-(k+n)A+(kn-lm)I=O`
`rArr" " (kn-lm)I=(k+n)A-A^(2)`
`rArr" " (kn-lm)IA^(-1)=(k+n)A-A^(2))A^(-1)`
`rArr" " (kn-lm)A^(-1)=(k+n)A A^(-1)-A(A A^(-1))`
`=(k+n)I-AI`
`=(k+n)I-A`
`=(k+n)[(1,0),(0,1)]-[(k,l),(m,n)]`
`=[(k+n,0),(0,k+n)]-[(k,l),(m,n)]`
` rArr " " (kn-lm)A^(-1)=[(n,-1),(-m,k)]`
Hence `A^(-1)=(1)/((kn-lm))[(n,-1),(-m,k)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(3,1),(-1,2):}] show that A^2-5A+7I=O . Hence find A^(-1)

Use the principle of mathematical induction : A sequence d_1,d_2,d_3,……… is defined by letting d_1= 2 and d_k = (d_k - 1)/(k) , for all natural numbers, k gt= 2 . Show that d_n = (2)/(n!) , for all n in N

If L= {1, 2, 3, 4}, M= {3, 4, 5, 6} and N= {1, 3, 5}, then verify that L - (M cup N)= (L - M) cap (L - N) .

If x_k = (sectheta)^(1/2^k)+ (tan theta)^(1/(2^k) and y_k = (sectheta)^(1/(2^k))-(tan theta)^(1/2^k) , then value of 3y_n prod_(k=0)^n (x_k) is equal to

Let n and k be positive such that n leq (k(k+1))/2 .The number of solutions (x_1, x_2,.....x_k), x_1 leq 1, x_2 leq 2, ........,x_k leq k , all integers, satisfying x_1 +x_2+.....+x_k = n , is .......

Explain giving reasons which of the following sets of quantum number are not possible (a ) n=0, l =0 m_(l) = 0, m_(s ) =+ (1)/(2) ( b) n=1 , l = 0 m_(l) = 0, m_(s ) = - (1)/(2) ( c) n=1 , l = 1, m_(l ) = 0, m_(s ) = + (1)/(2) (d ) n= 2, l = 1, m_(l ) = 0, m_(s ) = (1) /(2) ( e) n=3, l = 3, m_(l) = 3, m_(s ) = + (1)/(2) (f ) n=3, l = 1, m_(l) = 0, m_(s) l = + (1)/(2)

If l, m, n denote the side of a pedal triangle, then (l)/(a ^(2))+(m)/(b^(2))+(n)/(c ^(2)) is equal to

Let k=1^@ , then prove that sum_(n=0)^88 1/(cosnk* cos(n+1)k)=cosk/sin^2k

ABC is a right angled triangle in which /_B=90^(@) and BC=a. If n points L_(1),L_(2),"…….",L_(n) on AB are such that AB is divided in n+1 equal parts and L_(1)M_(1),L_(2)M_(2),"......,"L_(n)M_(n) are line segments parallel to BC and M_(1),M_(2),M_(3),"......,"M_(n) are on AC, the sum of the lenghts of L_(1)M_(1),L_(2)M_(2),"......,"L_(n)M_(n) is