Home
Class 12
MATHS
Let A A=[{:(0,1),(0,0):}] , show that (a...

Let A `A=[{:(0,1),(0,0):}]` , show that `(aI+bA)^(n)=a^(n)I+na^(n-1)bA`, where I is the identity matrix of order 2 and `n in N`.

Text Solution

Verified by Experts

Let `p(n):(aI+ba)^(n)=a^(n)I+na^(n-1)ba`
step I for `n=1`
`LHS= (aI+ba)^(1) =aI+ba`
and RHS `= a^(1)I+1.a^(0) ba=aI+ba`
LHS=RHS
therefore, `p(1) is true.
step II Assume that `p(k) is true , then
`p(k): (aI+ba)^(k) I+ka^(k-1)ba`
step III for `n=k+1,` we have to prove that
`p(k+1):(aI+ba)^(k+1)k=a^(k+1) I+(k+I) a^(k)bA `
LHS `=(aI+bA)^(k+1) = (aI+bA)^(k) (aI+bA)`
`=a^(k+1) I^(2) + a^(k)b (IA) + ka^(k)b (AI)+k a^(k-1)b^(2) A^(2)`
`=a^(k+1) I+(k+1)a^(k)b A+0`
`[therefore AI=A,A^(2)=0and I^(2) = I]`
`=a^(k+1)I+(k+1)a^(k)bA=RHS`
therefore, `P(k+1)` is true.
Hence, by the principal of mathematical12 induction `p(n)` is true for all n `in` N.
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(0,1),(0,0):}]andI=[{:(1,0),(0,1):}] then prove that (aI+bA)^(3)=a^(3)I+3a^(2)bA .

If A=[{:(3,-4),(1,-1):}] , then prove that A^(n)=[{:(1+2n,-4n),(n,1-2n):}] where n is any positive integer .

A=[{:(a,b),(0,1):}],ane1 then prove that A^(n)=[{:(a^(n),(b(a^(n)-1))/(a-1)),(0," "1):}], n inN .

if A =[(3,-4),( 1,-1)] then prove that A^n = [ ( 1+2n, -4n),( n,1-2n)] where n is any positive integer .

if A =[(3,-4),( 1,-1)] then prove that A^n = [ ( 1+2n, -4n),( n,1-2n)] where n is any positive integer .

If A=[{:(i,0),(0,i):}], n inN then A^(4n)= ...... (where I is imaginary complex number and i^(2)=-1)

If f(x)=(a-x^(n))^(1/n) , where a gt 0 and n in N , then fof (x) is equal to

If (a^(m))^(n)=a^(m^(n)) , then express m in the terms of n is (agt0, ane0, mgt1, ngt1)

If i=sqrt(-1), the number of values of i^(-n) for a different n inI is

The value of sum_(n=0)^(50)i^(2n+n)! (where i=sqrt(-1)) is