Home
Class 12
MATHS
Prove that the inverse of [[A,O],[B,C]] ...

Prove that the inverse of `[[A,O],[B,C]]` is
`[[A^(-1),O],[-C^(-1)BA^(-1),C^(-1)]]` , where A, Care non-singular matrices and
O is null matrix and find the inverse. `[[1,0,0,0],[1,1,0,0],[1,1,1,0],[1,1,1,1]]`

Text Solution

Verified by Experts

We have, First part `[[A,O],[B,C]][[A^(-1),O],[-C^(-1)BA^(-1),C^(-1)]]`
`=[[A A^(-1),O],[BA^(-1)-C C ^(-1)BA^(-1),C C^(-1)]]`
`=[[I,O],[BA^(-1)-BA^(-1),I]]=[[I,O],[0,I]]`
Hence, `[[A^(-1),O],[-C^(-1)BA^(-1),C^(-1)]]` is the inverse of `[[A,O],[B,C]] `
Second part `[[1,0,0,0],[1,1,0,0],[1,1,1,0],[1,1,1,1]] = [[A,O],[B,C]]`
where `A = [[1,0],[1,1]], B=[[1,1],[1,1]],C=[[1,0],[1,1]]and O = [[0,0],[0,0]]`
and `A^(-) = [[1,0],[-1,1]],C^(-1)=[[1,0],[-1,1]]`
Now, `C^(-1)BA^(-1) = [[1,0],[-1,1]][[1,1],[1,1]][[1,0],[-1,1]] = [[0,0],[0,0]]`
`therefore` Inverse of `[[1,0,0,0],[1,1,0,0],[1,1,1,0],[1,1,1,1]] "is" [[1,0,0,0],[-1,1,0,0],[0,1,1,0],[0,0,-1,1]]`
Promotional Banner

Similar Questions

Explore conceptually related problems

|A^(-1)|ne|A|^(-1) , where is non-singular matrix

(A^3)^(-1)=(A^(-1))^3 , where A is a square matrix and |A| ne 0

Using elementary row transformations , find the inverse of [{:(2,0,-1),(5,1,0),(0,1,3):}]

Using elementary transformations, find the inverse of the matrices [(2,0,-1),(5,1,0),(0,1,3)]

Find adjoint of each of the matrices [{:(1,1,1),(1,0,2),(3,1,1):}]

Given truth table is related with :- {:(A,B,Y),(1,1,0),(0,1,1),(1,0,1),(0,0,1):}

Which of the following gate corresponds to the truth table given below : {:(A,B,Y),(0,0,1),(0,1,1),(1,0,1),(1,1,0):}

The truth table given above is for which of the following gates :- {:(A,B,Y),(0,0,0),(0,1,1),(1,0,1),(1,1,1):}

Find the inverse of each of the following matrices [{:(2,0,-1),(5,1,0),(0,1,3):}]