Home
Class 12
MATHS
The number of solution of the set of equ...

The number of solution of the set of equations `(x^(2))/a^(2)+(y^(2))/(b^(2))-(z^(2))/(c^(2))=0,(x^(2))/(a^(2))-(y^(2))/(b^(2))+(z^(2))/(c^(2))=0,-(x^(2))/(a^(2))+(y^(2))/(b^(2))+(z^(2))/(c^(2))=0` is

A

unique

B

7

C

8

D

Infinite

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of solutions of the equation z^(2)+|z|^(2)=0 , where z in C , is

The number of positive integral solutions of the equation |(x^3+1,x^2y,x^2z),(xy^2,y^3+1,y^2z),(xz^2,z^2y,z^3+1)|=11 is

Solve the system of equations tan^2 x + cot^(2) x = 2cos^(2)y cos^(2)y+sin^(2)z=1

If a,b,c,d,e and f are in GP the value of |{:(a^(2),d^(2),x),(b^(2),e^(2),y),(c^(2),f"^(2),z):}| is

The solution of the differential equation (dy)/(dx)=(siny+x)/(sin2y-xcosy) is (a) sin^(2) y= xsiny+(x^(2))/(2)+C (b) sin^(2) y= xsiny-(x^(2))/(2)+C ( c ) sin^(2) y= x+siny+(x^(2))/(2)+C (d) sin^(2) y= x-siny+(x^(2))/(2)+C

Find the number solution are ordered pair (x,y) of the equation 2^(sec^(2)x)+2^("cosec"^(2)y)=2cos^(2)x(1-cos^(2)y) in [0,2pi]

Find the equations of the tangent and normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point (x_(0), y_(0)) .

Find the intersection point of (x)/(1)=(y)/(2)=(z)/(2)and2x+y+z=6 .

The roots of the quadratic equation (a + b-2c)x^2- (2a-b-c) x + (a-2b + c) = 0 are

If x, y in R and |{:((a ^(x) + a ^(-x) ) ^(2) , (a ^(x) - a ^(-x) ) ^(2), 1),((b ^(x) + b ^(-x)) ^(2),(b ^(x) - b ^(-x) ) ^(2) , 1), ( ( c ^(x) + c ^(-x)) ^(2) , (c ^(x) - c ^(-x)) ^(2) , 1):}|=2 y + 6 then y = ____________.