Home
Class 12
MATHS
If [[cos theta,sin theta],[-sin theta,co...

If `[[cos theta,sin theta],[-sin theta,cos theta]], ` then `lim _(n rarr infty )A^(n)/n ` is (where `theta in R`)

A

a zero matrix

B

an identity matrix

C

`[[0,1],[-1,0]]`

D

`[[0,1],[0,-1]]`

Text Solution

Verified by Experts

The correct Answer is:
A

`because A = [[cos theta , sin theta],[-sin theta, cos theta ]]`
`therefore A^(n) = [[cos ntheta , sin ntheta],[-sin ntheta, cos ntheta ]]`
`rArr A^(n)/n = [[lim_(nrarr infty)(cos ntheta)/n , lim_(nrarr infty)(sin ntheta)/n],[-lim_(nrarr infty)(sin ntheta)/n, lim_(nrarr infty)(cos ntheta)/n ]]= [[0,0],[0,0]]`
= a zero matirx `[because - 1 lt sin infty 1 and -1 lt cos infty lt 1]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f (theta) = |sin theta| + |cos theta|, theta in R , then

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2))

If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1]], C=ABA^(T), then A^(T) C^(n) A, n in I^(+) equals to

Vertices of a variable triangle are (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R . Locus of its orthocentre is

If 3 cos theta+4 sin theta=A sin (theta+alpha) , then values of A and alpha are

2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) is equal to

The value of theta , lying between theta =0 and theta=(pi)/(2) and satisfying the equation . |{:(1+ cos^(2 ) theta , sin^(2) theta , 4 sin 4 theta ),(cos^(2) theta , 1+sin^2 theta , 4 sin 4 theta ),(cos^(2) theta , sin^(2) theta , 1+ 4 sin 4 theta ):}|=0 , is

Let theta in (pi//4,pi//2), then Statement I (cos theta)^(sin theta ) lt ( cos theta )^(cos theta ) lt ( sin theta )^(cos theta ) Statement II The equation e^(sin theta )-e^(-sin theta )=4 ha a unique solution.

If a= cos theta+ i sin theta , then find the value of (1+a)/(1-a)

If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is