Home
Class 12
MATHS
If A is a skew-symmetric matrix of order...

If A is a skew-symmetric matrix of order 2 and B, C are
matrices `[[1,4],[2,9]],[[9,-4],[-2,1]]` respectively, then
`A^(3) (BC) + A^(5) (B^(2)C^(2)) + A^(7) (B^(3) C^(3)) + ... + A^(2n+1) (B^(n) C^(n)),` is

A

a symmetric matrix

B

a skew-symmetric matrix

C

an identity matrix

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

Let, `A= [[0,a],[-a,0]], `
`BC= [[1,4],[2,9]][[9,-4],[-2,1]]=[[1,0],[0,1]]=I`
`therefore B^(2) C^(2) = (BC^(2)) = I^(2) = I`
Similarly, `B^(2) C^(2) = B^(3) C^(3) = ...= B^(n) C^(n) = I`
Let, `D= A^(3) (BC) + A^(5) (B^(2)C^(2)) + A^(7) (B^(3) C^(3)) + ...+ A^(2n+1) (B^(n)C^(n))`
`= A^(3) + A^(5) + A^(7) +...+A^(2n+1)`
`=A(A^(2) + A^(4) +A^(6) +...+ A^(2n)) `
Let, `A=[[0,a],[-a,0]]`
` rArr A^(2) = [[-a^(2),0],[0,-a^(2)]]`
`therefore D = IA (-a^(2) + a^(4) - a^(6)+...+ (-1)^(n) a^(2n))[agt0]`
`= A (-a^(2) + a^(4) - a^(6)+...+ (-1)^(n) a^(2n)`
Hence, D is skew-symmetric.
Promotional Banner

Similar Questions

Explore conceptually related problems

C is a skew symmetric matrix of order n. X is a column matrix of order nxx1 , then X'CX is a …… matrix.

Let three matrices A = [[2,1],[4,1]],B=[[3,4],[2,3]]and C= [[3,-4],[-2,3]], then tr (A) + tr ((ABC)/2)+tr((A(BC)^(2))/4) + tr ((A(BC)^(3))/8) +...+infty equals to

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

If a variable tangent to the curve x^2y=c^3 makes intercepts a , bonx-a n dy-a x e s , respectively, then the value of a^2b is 27c^3 (b) 4/(27)c^3 (c) (27)/4c^3 (d) 4/9c^3

If A and B are two matrices of the order 3xxmand3xxn , respectively , and m=n , then the order of matrix (5A-2B) is ……….

If A,B and C are square matrices of order n and det (A)=2, det(B)=3 and det ©=5, then find the value of 10det (A^(3)B^(2)C^(-1)).

Verify : a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]

Set A= {1,2,3,4}, B= {2,4} then verify that n(A xx B) = n(A) n(B) .

If the centroid of tetrahedron OABC where A,B,C are given by (a,2,3),(1,b,2) and (2,1,c) respectively is (1,2,−2), then distance of P(a,b,c) from origin is

If ST and SN are the lengths of subtangents and subnormals respectively to the curve by^2 = (x + 2a)^3. then (ST^2)/(SN) equals (A) 1 (B) (8b)/27 (C) (27b)/8 (D) ((4b)/9)