Home
Class 12
MATHS
Let three matrices A = [[2,1],[4,1]],B=...

Let three matrices `A = [[2,1],[4,1]],B=[[3,4],[2,3]]and C= [[3,-4],[-2,3]],`
then tr `(A) + tr ((ABC)/2)+tr((A(BC)^(2))/4) + tr ((A(BC)^(3))/8) +...+infty` equals to

A

4

B

9

C

12

D

6

Text Solution

Verified by Experts

The correct Answer is:
D

`because BC = [[3,4],[2,3]] [[3,-4],[-2,3]]=[[1,0],[0,1]]=I`
`therefore tr (A) + tr ((ABC)/2) + tr ((A(BC)^(2))/4) +tr((A(BC)^(3))/8) +...`
`= tr (A) + tr (A/2) + tr(A/2^(2))+tr(A/2^(3))+..." upto " infty`
`=tr (A) + 1/2 tr (A) + 1/2^(2) tr (A) + ... " upt0 " infty `
`= (tr(A))/(1-(1/2)) = 2 tr (A) = 2(2+1) = 6`
Promotional Banner

Similar Questions

Explore conceptually related problems

if A=[[2,-3],[-4,1]] then (3A^2+12A)=?

If A=[[3,-3,4],[2,-3,4],[0,-1,1]] , then

If A is a skew-symmetric matrix of order 2 and B, C are matrices [[1,4],[2,9]],[[9,-4],[-2,1]] respectively, then A^(3) (BC) + A^(5) (B^(2)C^(2)) + A^(7) (B^(3) C^(3)) + ... + A^(2n+1) (B^(n) C^(n)), is

Let A=[{:(2,-1),(4,2):}]B=[{:(4,3),(-2,1):}]andC=[{:(-2,-3),(-1,2):]] Find the following (1) 2B+3C,(2)A+(B+C),(3)(2A-3B)-Cand4)(B+C)-2A.

Let A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, the Auu(BnnC) is

A=[{:(2,3,-1),(1,-2,4):}]andB=[{:(1,4),(2,5),(-1,3):}] then verify that (AB) =B'A.

If the matrices A=[{:(3,0),(4,3):}]andB=[{:(3,0),(-4,3):}] , then without multiplication of matrices find A^(2)+AB+6B .

Let A={1,2,3,4,5,6} and B={2,4,6,8,10}. Find the intersection of A and B.

A= {1, 2, 3, 4, 5}, B= {1, 3, 5, 6}, C= {1, 2, 3} , then find the following sets. A - (B - C)