Home
Class 12
MATHS
If A=[[3,-3,4],[2,-3,4],[0,-1,1]] , then...

If `A=[[3,-3,4],[2,-3,4],[0,-1,1]]` , then

A

`adj(adjA)=A`

B

`abs(adj(adj(A)))=1`

C

`abs(adj(A))=1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

Here, `abs(A) = abs((3, -3, 4),(2, -3, 4),(0, -1, 1))`
`= 3 (-3+4) + 3 (2-0) + 4 (-2+0)= 1 ne 0`
`because adj (adjA) = abs(A)^(3-2) A = A ` ...(i)
and `abs(adj (A) ) = abs(A)^(3-1) = abs(A)^(2) = 1^(2) = 1 `
Also, `abs(adj(adj(A))) = abs(A ) = 1 ` [ from Eq. (i) ]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(1,2,3),(3,-2,1),(4,2,1):}] , then show that A^(3)-23A-40I=O .

If A=[{:(1,3,3),(1,4,3),(1,3,4):}] , then verify that A adjA=|A|I. Also find A^(-1)

if A=[[2,-3],[-4,1]] then (3A^2+12A)=?

If A=[{:(1,2,1),(2,1,3),(1,1,0):}] then prove that A^3-2A^2-7A-4I_3=0 . Hence find A^(-1)

If A=[1,7] and B=[{:(2,1),(3,4):}] , then find AB.

Evaluate |[1,2,3],[-2,3,2],[3,4,-4]|xx|[-2,1,3],[3,-2,1],[2,1,-2]| . Using the concept of multiplication of determinants.

If A=[{:(1,0,1),(0,1,2),(0,0,4):}] then show that [3A]=27[A]

If A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]andC=[{:(4,1,2),(0,3,2),(1,-2,3):}] , then compute (A+B) and (B-C).Also , verify that A+(B-C) =(A+B)-C.