Home
Class 12
MATHS
Let A= [[a,b,c],[b,c,a],[c,a,b]] is an o...

Let `A= [[a,b,c],[b,c,a],[c,a,b]]` is an orthogonal matrix and `abc = lambda (lt0).`
The value ` a^(2) b^(2) + b^(2) c^(2) + c^(2) a^(2)`, is

A

`2lambda`

B

`-2lambda`

C

`lambda^(2)`

D

`-lambda`

Text Solution

Verified by Experts

The correct Answer is:
B

`becauseA` is an orthogonal matrix
`therefore A A^(T) =I`
`[[a,b,c],[b,c,a],[c,a,b]] [[a,b,c],[b,c,a],[c,a,b]] =1 [[1,0,0],[0,1,0],[0,0,1]]`
`[[a^(2)+b^(2)+c^(2),ab + bc+ca,ab + bc+ ca],[ab + bc + ca,a^(2) +b^(2)+c^(2) , ab+ bc+ ca ],[ab+ bc+ca,ab+bc+ca,a^(2) + b^(2) + c^(2)]] =1 [[1,0,0],[0,1,0],[0,0,1]]`
By equality of matrices, we get
`a^(2) + b^(2) +c^(2) = 1 ` ...(i)
`ab + bc + ca= 0` ...(ii)
` (a+b+c)^(2) + a^(2)= b^(2) +c^(2)+ 2 (ab + bc + ca)`
`= 1 + 0 = 1`
` therefore a+ b + c = pm 1` ...(iii)
`because a^(2) b^(2) + b^(2) a^(2) + c^(2) a^(2) = (ab + bc+ ca) ^(2) - 2abc (a + b + c)`
`= 0- 2abc (pm 1) pm 2 lambda [ because abc = lambda ]`
` = - 2 lambda ` `[because lambda lt 0]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The value of a^(3) + b^(3)+c^(3) is

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The equation whose roots are a, b, c, is

a,b,c,d are in G.P. Prove that a^(2)-b^(2),b^(2)-c^(2), c^(2)-d^(2) are also in G.P.

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(3)c^(2) is

If a,b,c,d are the side of a quadrilateral, then find the the minimuym value of (a^(2)+b^(2)+c^(2))/(d ^(2))

If 2,b,c, 23 are in G.P then (b-c)^(2)+ (c-2)^(2) + (23-b)^(2) = …….

If a,b,c are in AP and a^(2),b^(2),c^(2) are in HP, then

If the integers a,b,c,d are in arithmetic progression and a lt b lt c lt d and d=a^(2)+b^(2)+c^(2) , the value of (a+10b+100c+1000d) is

For any triangle ABC, prove that : (b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB+(a^(2)-b^(2))cotC=0 .

if a,b, c, d and p are distinct real number such that (a^(2) + b^(2) + c^(2))p^(2) - 2p (ab + bc + cd) + (b^(2) + c^(2) + d^(2)) lt= 0 then a, b, c, d are in