Home
Class 12
MATHS
Let A= [[a,b,c],[b,c,a],[c,a,b]] is an o...

Let `A= [[a,b,c],[b,c,a],[c,a,b]]` is an orthogonal matrix and `abc = lambda (lt0).`
The value of ` a^(3) + b^(3)+c^(3)` is

A

`lambda`

B

`2lambda`

C

`3lambda`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D

`becauseA` is an orthogonal matrix
`therefore A A^(T) =I`
`[[a,b,c],[b,c,a],[c,a,b]] [[a,b,c],[b,c,a],[c,a,b]] =1 [[1,0,0],[0,1,0],[0,0,1]]`
`[[a^(2)+b^(2)+c^(2),ab + bc+ca,ab + bc+ ca],[ab + bc + ca,a^(2) +b^(2)+c^(2) , ab+ bc+ ca ],[ab+ bc+ca,ab+bc+ca,a^(2) + b^(2) + c^(2)]] =1 [[1,0,0],[0,1,0],[0,0,1]]`
By equality of matrices, we get
`a^(2) + b^(2) +c^(2) = 1 ` ...(i)
`ab + bc + ca= 0` ...(ii)
` (a+b+c)^(2) + a^(2)= b^(2) +c^(2)+ 2 (ab + bc + ca)`
`= 1 + 0 = 1`
` therefore a+ b + c = pm 1` ...(iii)
` because a^(3) + b^(3) +c^(3) - 3abc = (a+b+c) `
`(a^(2) + b^(2) +c^(2) - ab - bc - ca)`
`rArr a^(3) + b^(3) + c^(3) - 3lambda = (pm 1) (1-0) `
[from Eqs.(i), (ii) and (iii) and abc` = lambda`]
`rArr a^(3) + b^(3)+ c^(3) = 3lambda pm 1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The value a^(2) b^(2) + b^(2) c^(2) + c^(2) a^(2) , is

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The equation whose roots are a, b, c, is

Suppose a, b, c, in R and abc = 1, if A = [[3a, b, c ],[b, 3c, a ],[c, a, 3b]] is such that A ^(T) A = 4 ^(1//3) I and abs(A) gt 0, the value of a^(3) + b^(3) + c^(3) is

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(3)c^(2) is

Factorise : a^(3) + 27b^(3) + 64c^(3) - 36abc

If a + b + c = 5 then the maximum value of ab^(3)c is……

Fractorise a ^(3) - 8b ^(3) - 64 c^(3) - 24 abc

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three comumn matrices satisgying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The ratio of the trace of the matrix B to the matrix C, is

If |a|=1,|b|=3 and |c|=5 , then the value of [a-b" "b-c" "c-a] is