Home
Class 12
MATHS
Let A be a square matrix of order of ord...

Let A be a square matrix of order of order 3 satisfies the matrix equation
`A^(3) -6 A ^(2) + 7 A - 8 I = O and B = A- 2 I . ` Also, `det A = 8.`
The value of `det (adj(I-2A^(-1)))` is equal to

A

`25/16`

B

`125/64`

C

`64/125`

D

`16/25`

Text Solution

Verified by Experts

The correct Answer is:
A

`because B = A -2I `
`therefore A^(-1) B = I - 2A^(-1)` ...(i)
`det [adj(I-2A^(-1)) ] = det [adj(A^(-1) B)]` [from Eq. (i)]
`= abs(adj (A^(-1)B))`
`=abs(A^(-1) B )^(2) = (abs(A^(-1)) abs(B))^(2) = (abs(B)/abs(A))^(2) ` ...(ii)
From Eq. (i), we get `B = A - 2I`
`therefore B^(3) = (A-2I)^(3) = A^(3) - 6A^(2) + 12A - 8I`
` = 5A [ because A^(3) - 6 A^(2) + 7 A - * I = 0]`
` rArr abs(B^(3))=abs(5A)`
`rArr abs(B)^(3) = 5^(3) abs(A) `
`rArr abs(B)^(3)= 5^(3) xx 8`
` rArr abs(B)^(3) = (10)^(3) `
`therefore abs(B) = 10`
From Eq. (ii), we get
`det[adj (I - 2 A ^(-1) )] = (abs(B)/abs(A))^(2) = (10/8)^(2) = 25/16`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A be a square matrix of order 3xx3 then |KA| is equal to ……

Let A be a nonsingular square matrix of order 3xx3 .Then |adj A| is equal to

|adjA|=|A|^2 , where A is a square matrix of order two

If A is an invertible matrix of order 2, then det (A^(-1)) is equal to …….

Show that A=[{:(5,3),(-1,-2):}] satisfies the equation A^(2)=3A-7I=0 and hence find A^(-1) .

Let A and B be square matrices of the order 3xx3 . Is (AB)^(2)=A^(2)B^(2) ? Given reasons .

If A is square matrix such that A^(2)=A , show that (I+A)^(3)=7A+I .

If A is a square matrix such that A^2 =A then (I+A)^2 -7A =……

If A is a matrix of order 3xx3 , then (A^2)^(-1) ="........."