Home
Class 12
MATHS
If the matrix A = [[lambda(1)^(2), lambd...

If the matrix `A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]]` is idempotent,
the value of `lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2)` is

Text Solution

Verified by Experts

The correct Answer is:
1

`because A^(2) = Acdot A = [[lambda_(1)^(2), lambda_(1) lambda_(2), lambda_(1) lambda_(3) ],[lambda_(2)lambda_(1), lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] [[lambda_(1)^(2), lambda_(1) lambda_(2), lambda_(1) lambda_(3) ],[lambda_(2)lambda_(1), lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]]`
` = [[lambda_(1)^(2)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)), lambda_(1) lambda_(2)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)), lambda_(1) lambda_(3)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)) ],[lambda_(2)lambda_(1)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)), lambda_(2)^(2) (lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)),lambda_(2)lambda_(3)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2))],[lambda_(3)lambda_(1)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)),lambda_(3)lambda_(2)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2)),lambda_(3)^(2)(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2))]]`
`= (lambda_(1)^(2) + lambda_(2)^(2) + lambda_(3)^(2) ) A`
Given, A is idempotent
`rArr A^(2) = A`
`= lambda_(1)^(2) + lambda_(2)^(2) + lambda_(3)^(2) = 1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If plambda^4+qlambda^3+rlambda^2+slambda+t=|(lambda^2+3lambda,lambda-1,lambda+3),(lambda+1,2-lambda,lambda-4),(lambda-3,lambda+4,3lambda)|, then value of t is

Show that the area of the triangle with vertices (lambda, lambda-2), (lambda+3, lambda) and (lambda+2, lambda+2) is independent of lambda .

If sum_(i=1)^(n)a_(i)^(2)=lambda, AAa_(i)ge0 and if greatest and least values of (sum_(i=1)^(n)a_(i))^(2) are lambda_(1) and lambda_(2) respectively, then (lambda_(1)-lambda_(2)) is

If (-2,7) is the highest point on the graph of y =-2x^2-4ax +lambda , then lambda equals

If , lambda_(1) and lambda_(2) are the wavelength of the numbers of the Lyman and Paschen seri respectively. Then lambda_(1):lambda_(2)= .....

If sin2A= lambda sin 2B prove that (tan(A+B)/tan(A-B))=(lambda+1)/(lambda-1)

Cut off potential for a metal in photoclectric effect for light of wavelength lambda_(1), lambda_(2) and lambda_(3) is found to be V_(1),V_(2) and V_(3) volts , If V_(1),V_(2) and V_(3 are in Arithmetic progression then lambda_(1),lambda_(2) and lambda_(3) will be in

vec(a)=2hati+lambda_(1)hatj+3hatk,vec(b)=4hati+(3-lambda_(2))hatj+6hatk and vec( c )=3hati+6hatj+(lambda_(3)-1)hatk are three vectors. Vector vec(b)=2vec(a) and vec(a) is perpendicular to vec(b) then the possible value of (lambda_(1),lambda_(2),lambda_(3)) is ..............

If |bar(a)|=4 and -3le lambda le 2 , then the range of |lambda. bar(a)| is ………..