Home
Class 12
MATHS
Let X be the soultion set of the equatio...

Let X be the soultion set of the equation `A^(x)=-I,` where
`A = [[0 , 1, -1],[4, -3, 4],[3, -3, 4]]` and I is the corresponding unit matrix
and `x subseteq N, ` the minimum value of `sum ( cos ^(x) theta + sin ^(x) theta )`
` theta in R - { (npi)/2 , n in I }` is

Text Solution

Verified by Experts

The correct Answer is:
2

` because A = [[0,1,-1],[4,-3,4],[3,-3,4]]`
`therefore A^(2) = A cdot A = [[0,1,-1],[4,-3,4],[3,-3,4]] [[0,1,-1],[4,-3,4],[3,-3,4]] = [[1,0,0],[0,1,0],[0,0,1]]= I `
`rArr A^(2) = I rArr A^(4) = A^(6) = A^(8) = ... = I`
Now, `A^(x) = I`
`rArr x = 2, 4, 6, 8...`
`therefore sum (cos ^(x) theta + sin ^(x) theta ) = ( cos^(2) theta + sin ^(2) theta) + (cos ^(4) theta + sin^(4) theta ) + (cos^(6) theta + sin ^(6) theta) + ...`
`=(cos^(2) theta + cos^(4) theta + cos ^(6) theta +...) `
`+ (sin^(2) theta + sin^(4) theta + sin^(6) theta + ...)`
`= (cos^(2) theta)/(1- cos^(2) theta) + (sin ^(2) theta)/(1- sin ^(2) theta)`
`= cot^(2) theta + tan ^(2) theta ge 2`
hences, minimum value of `sum (cos^(x) theta+ sin ^(x) theta)` is 2.
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of f(x)=3cos x + 4sin x is ………..

Minimum value of the expression cos^2theta-(6 sintheta cos theta) + 3 sin^2theta + 2 , is

sin^(4) theta + cos ^(4) theta + 2sin^(2) theta cos ^(2) theta has value 1.

Minimum value of 4x^2-4x|sinx|-cos^2 theta is equal

Find the slope of the normal to the curve x = a cos^(3)theta, y=a sin^(3)theta at theta = (pi)/(4) .

Equation x = 4 cos theta and y = 3 sin theta , theta in (-pi,pi) denotes ellipse .

z=i+sqrt(3)=r(cos theta+sin theta)

If tan^(4)theta +tan^(2) theta = 1 , then the value of cos^(4)theta +cos^(2)theta is-

Prove that 2 (sin^(6)theta +cos^(6) theta ) - 3(sin^(4)theta +cos^(4) theta ) + 1 = 0