Home
Class 12
MATHS
Suppose a, b, c, in R and abc = 1, if A...

Suppose `a, b, c, in R ` and `abc = 1, if A = [[3a, b, c ],[b, 3c, a ],[c, a, 3b]]` is such that `A ^(T) A = 4 ^(1//3) I and abs(A) gt 0, ` the value of `a^(3) + b^(3) + c^(3)` is

Text Solution

Verified by Experts

The correct Answer is:
9

`because A = [[3a, b, c],[c,3c, a],[c, a, 3b]]`
`therefore det (A)= [[3a, b, c],[c,3c, a],[c, a, 3b]]= 29 abc - 3(a^(3) + b^(3) +c^(3) )`
or
`abs(A)= 29 abc - 3(a^(3) + b^(3) +c^(3) ) " " ...(i)`
Given, `A^(T) A + 4^(1//3)I`
`rArr abs(A^(T)A) =abs( 4^(1//3)I)`
`rArr abs(A^(T))abs(A) = (4^(1//3))^(3)abs(I)`
`rArr abs(A)abs(A) = 4.1`
`therefore abs(A) = 2 " " [because abs(A) gt0]`
From Eq.(i) we get
`2 = 29abc - 3 ( a^(3) + b^(3) + c^(3) )`
`rArr 2 = 29 - 3 ( a^(3) + b^(3) + c^(3) ) " " because abc = 1]`
` therefore a^(3) + b^(3) c^(3) = 9`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(3)c^(2) is

Fractorise a ^(3) - 8b ^(3) - 64 c^(3) - 24 abc

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The value of a^(3) + b^(3)+c^(3) is

Factorise : a^(3) + 27b^(3) + 64c^(3) - 36abc

If a + b + c = 5 then the maximum value of ab^(3)c is……

If |a|=1,|b|=3 and |c|=5 , then the value of [a-b" "b-c" "c-a] is

(a) If x + y + z=0, show that x ^(3) + y ^(3) + z ^(3)= 3 xyz. (b) Show that (a-b) ^(3) + (b-c) ^(3) + (c-a)^(3) =3 (a-b) (b-c) (c-a)

If a,b,c,d are positive real numbers such that (a)/(3) = (a+b)/(4)= (a+b+c)/(5) = (a+b+c+d)/(6) , then (a)/(b+2c+3d) is:-

Suppose a,b,c are in AP and a^(2),b^(2),c^(2) are in GP, If agtbgtc and a+b+c=(3)/(2) , than find the values of a and c.