Home
Class 12
MATHS
Number of solutions of the equation cos[...

Number of solutions of the equation `cos[x]=e^(2x-1),x in [0,2pi]`, where[.] denotes the greatest integer function is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of solution of the equations |cos x |=[x] , (where [.] denotes the greatest integer function ).

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes th greatest integer function ), then

The sum of the roots of the equation cos^(-1)(cosx)=[x]. where [x] denotes greatest integer function, is

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Number of solution (s) of the equations cos^(-1) ( cos x) = x^(2) is

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

The complete solution set of the inequality [cot^(-1)x]^2-6[cot^(-1)x]+9leq0 where [ ] denotes greatest integer function, is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is