Home
Class 12
MATHS
Let f(x)=f(1)(x)-2f(2)(x), where f(1)(x...

Let `f(x)=f_(1)(x)-2f_(2)(x),` where `f_(1)(x)={{:(min{x^(2),|x|}",",|x|le1),(max{x^(2),|x|}",",|x|gt1):}` `"and "f_(2)(x)={{:(min {x^(2),|x|}",",|x|gt1),(max{x^(2),|x|}",",|x|le1):}` `"and let "g(x)={{:(min{f(t),-3letlex,-3lexlt0}),(max{f(t),0letltx,0lexle3}):}` The graph of `y=g(x)` in its domain is broken at

A

1 point

B

2 points

C

3 points

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=f_(1)(x)-2f_(2)(x), where f_(1)(x)={{:(min{x^(2),|x|}",",|x|le1),(max{x^(2),|x|}",",|x|gt1):} "and "f_(2)(x)={{:(min {x^(2),|x|}",",|x|gt1),(max{x^(2),|x|}",",|x|le1):} "and let "g(x)={{:(min{f(t),-3letlex,-3lexlt0}),(max{f(t),0letltx,0lexle3}):} For x in(-1,00),f(x)+g(x) is

f(x)= {(x^(10)-1",","if" x le 1),(x^(2)",","if" x gt 1):}

f(x) = {(x^(3)-3",","if" x le 2),(x^(2)+1 ",","if " x gt 2):}

Let f(x) = tan^(-1)(((x-2))/(x^(2)+2x+2)) ,then 26 f'(1) is

int_(0)^(2) f(x) dx = …... , where f(x) = max {x, x^(2) } .

Let f(x) = max. {|x^2 - 2 |x||,|x|} and g(x) = min. {|x^2 - 2|x||, |x|} then

If a function f(x) is defined as f(x) = {{:(-x",",x lt 0),(x^(2)",",0 le x le 1),(x^(2)-x + 1",",x gt 1):} then

f(x)= {(2x+3",","if" x le 2),(2x-3",","if" x gt 2):}

f(x) = {(2+ sqrt(1-x^(2))",",|x| le 1),(2e^((1-x)^(2)),|x| gt 1):} Discuss the continuity of f(x) at x=1