Home
Class 12
MATHS
Solve the equation (tan x )^( cos^(2) x...

Solve the equation ` (tan x )^( cos^(2) x)= ( cot x )^( sin x )`

Text Solution

Verified by Experts

The correct Answer is:
`alpha = sin^(-1)((1-sqrt(5))/(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation : 2 tan^(-1) ( 2x - 1) = cos ^(-1) x .

Solve the system of equations tan^2 x + cot^(2) x = 2cos^(2)y cos^(2)y+sin^(2)z=1

Solve the equation for x and y , |sin x + cos x|^( sin^(2) x-1//4)=1+|siny| and cos^(2)y=1+sin^(2)y .

Solve the equation cos(tan^(-1)x)=sin("cot"^(-1)3/4)

Find all number of pairs x,y that satisfy the equation tan^4 x + tan^(4)y+2 cot^(2)x * cot^(2) y=3+ sin^(2)(x+y) .

Find the number of solution of the equations sin^3 x cos x + sin^(2) x* cos^(2) x+sinx * cos^(3) x=1 , when x in[0,2pi]

The number of solutions of the equation 16(sin^(5)x +cos^(5)x)=11(sin x + cos x) in the interval [0,2pi] is

(sin x + sin 3x )/( cos x + cos 3x )= tan 2x

(sin 5x + sin 3x )/( cos 5x + cos 3x ) = tan 4x

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos ^2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 sin alpha + sin beta + sin gamma can be equal to