Home
Class 12
MATHS
If 0 le x le 2pi, then 2^(cosec^(2) x) ...

If `0 le x le 2pi`, then `2^(cosec^(2) x) sqrt(1/2 y^(2) -y+1) le sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
`x = (pi)/(2), (3pi)/(2)` and y = 1
Promotional Banner

Similar Questions

Explore conceptually related problems

x-y le 2

If 0 le x le 2pi and |cos x | le sin x , the

3(x-1) le 2 (x-3)

If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz .

If y= e^(cos^(-1)x), -1 le x le 1 , then prove that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)- y= 0

If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),( 2 cos pix + tan ^(-1)x ,,, 1 lt x le 2):} is differentiable in [0,2] then: ([.] denotes greatest integer function)

3x+2y le 12, x ge 1, y ge 2

5x+4y le 20, x ge 1, y ge 2

If sqrt(1-x^(2)) + sqrt(1 -y^(2))= a(x-y) , then prove that (dy)/(dx)= sqrt((1-y^(2))/(1-x^(2))) . (Where |x| le 1, |y| le 1 )